DOI: https://doi.org/10.15587/2312-8372.2017.115219

Modeling of polygons of maximum passenger route transport accessibility by the example of the transport system of Ukraine

Kostiantyn Dolia, Yuri Davidich, Olena Dolia, Sergey Lyfenko, Olena Uhodnikova

Abstract


The state (regional) transport system is analyzed on the example of Ukraine. The road network of railways and highways of Ukraine is considered, which consists of more than 30 thousand arcs and knots. The models of the network studied are constructed using ArcMap geoinformation technologies. This provides a description of the network elements with geographical accuracy. One of the most problematic areas of engineering and in particular transport networks is the determination of their maximum potential performance indicators. Formalization of certain parameters determines the planning of technical indicators of flows in the network.

Based on the results of the simulation of polygons of maximum passenger route transport accessibility for various modes of transport, it is determined that the characteristics of the model set of polygons are influenced by both the selected network model and the connection speed. It is proved that at the same speed of movement polygons constructed in different networks differ. This is due to the individual features of the networks,

It has been established that within 1.5 hours of driving, a railway track with a speed of 68 km/h does not reach any nodes (cities) in both networks, and an automotive polygon with the same speed contains one node (city). A polygon constructed on railway networks with a ride within the limits of 1.5 to 3 hours contains one transport node, and automobile under these conditions – two. When examining a landfill that meets the transport accessibility by rail networks within the range of 5 to 8 hours, there are eleven transport nodes, and the automotive network in these conditions is thirteen. Comparing rail and road transport networks, it can be argued that the road transport network has a larger service area than the railway.

The carried out researches can be used at the decision of questions of planning of time expenses and power resources in the course of transportation.


Keywords


transport system; road networks of railways and highways; intercity transportation

References


Spichkova, M., Simic, M., Schmidt, H. (2015). Formal Model for Intelligent Route Planning. Procedia Computer Science, 60, 1299–1308. doi:10.1016/j.procs.2015.08.196

Deri, A., Kalpakci, A. (2014). Efficient Usage of Transfer based System in Intracity Bus Transit Operation: Sample of Izmir. Procedia Social and Behavioral Sciences, 111, 311–319. doi:10.1016/j.sbspro.2014.01.064

Dib, O., Manier, M.-A., Moalic, L., Caminada, A. (2017). A multimodal transport network model and efficient algorithms for building advanced traveler information systems. Transportation Research Procedia, 22, 134–143. doi:10.1016/j.trpro.2017.03.020

Vissat, L. L., Clark, A., Gilmore, S. (2015). Finding Optimal Timetables for Edinburgh Bus Routes. Electronic Notes in Theoretical Computer Science, 310, 179–199. doi:10.1016/j.entcs.2014.12.018

Arhin, S., Noel, E., Anderson, M. F., Williams, L., Ribisso, A., Stinson, R. (2016). Optimization of transit total bus stop time models. Journal of Traffic and Transportation Engineering (English Edition), 3 (2), 146–153. doi:10.1016/j.jtte.2015.07.001

Bohari, Z. A., Bachok, S., Osman, M. M. (2014). Improving the Quality of Public Transportation System: Application of Simulation Model for Passenger Movement. Procedia Social and Behavioral Sciences, 153, 542–552. doi:10.1016/j.sbspro.2014.10.087

Haar, S., Theissing, S. (2015). A Hybrid-Dynamical Model for Passenger-flow in Transportation Systems**This research work has been carried out under the leadership of the Technological Research Institute SystemX, and therefore granted with public funds within the scope of the French Program «Investissements d’Avenir». IFAC-PapersOnLine, 48 (27), 236–241. doi:10.1016/j.ifacol.2015.11.181

Sun, D., Xu, Y., Peng, Z.-R. (2015). Timetable optimization for single bus line based on hybrid vehicle size model. Journal of Traffic and Transportation Engineering (English Edition), 2 (3), 179–186. doi:10.1016/j.jtte.2015.03.006

Vrtic, M., Frohlich, P., Schussler, N., Axhausen, K. W., Lohse, D., Schiller, C., Teichert, H. (2007). Two-dimensionally constrained disaggregate trip generation, distribution and mode choice model: Theory and application for a Swiss national model. Transportation Research Part A: Policy and Practice, 41 (9), 857–873. doi:10.1016/j.tra.2006.10.003

Rwakarehe, E. E., Zhong, M., Christie, J. (2014). Development of a Freight Demand Model for the Province of Alberta Using Public Sources of Data. Procedia – Social and Behavioral Sciences, 138, 695–705. doi:10.1016/j.sbspro.2014.07.263

Fornalchyk, Ye., Bilous, A., Demchuk, I. (2015). The Model of Correspondence of Passenger Transportation on the Basis of Fuzzy Logic. ECONTECHMOD: An International Quarterly Journal on Economics of Technology and Modelling Processes, 4 (2), 59–64.

Grosche, T., Rothlauf, F., Heinzl, A. (2007). Gravity models for airline passenger volume estimation. Journal of Air Transport Management, 13 (4), 175–183. doi:10.1016/j.jairtraman.2007.02.001

Wu, C., Han, J., Hayashi, Y. (2011). The impact of route network expansion on airport attractiveness: a case study of Chubu international airport in Japan. Proceedings of the 2011 World Conference of Air Transport Research Society, 1–14.

Hu, Y., Zhang, Q., Wang, W. (2012). A Model Layout Region Optimization for Feeder Buses of Rail Transit. Procedia – Social and Behavioral Sciences, 43, 773–780. doi:10.1016/j.sbspro.2012.04.151

Fonzone, A., Schmocker, J.-D., Liu, R. (2015). A Model of Bus Bunching under Reliability-based Passenger Arrival Patterns. Transportation Research Procedia, 7, 276–299. doi:10.1016/j.trpro.2015.06.015

Zhang, C., Teng, J. (2013). Bus Dwell Time Estimation and Prediction: A Study Case in Shanghai-China. Procedia – Social and Behavioral Sciences, 96, 1329–1340. doi:10.1016/j.sbspro.2013.08.151

Dave, S. M., Raykundaliya, D. P., Shah, S. N. (2013). Modeling Trip Attributes and Feasibility Study of co-ordinated Bus for School Trips of Children. Procedia – Social and Behavioral Sciences, 104, 650–659. doi:10.1016/j.sbspro.2013.11.159

Richter, C., Keuchel, S. (2012). Modelling Mode Choice in Passenger Transport with Integrated Hierarchical Information Integration. Journal of Choice Modelling, 5 (1), 1–21. doi:10.1016/s1755-5345(13)70045-9

Kabashkin, I. (2015). Modelling of Regional Transit Multimodal Transport Accessibility with Petri Net Simulation. Procedia Computer Science, 77, 151–157. doi:10.1016/j.procs.2015.12.373

Essadeq, I., Dubail, E., Jeanniere, E. (2016). Modelling Passenger Congestion in Transit System – Benchmark and Three Case Studies. Transportation Research Procedia, 14, 1792–1801. doi:10.1016/j.trpro.2016.05.145

Brands, T., de Romph, E., Veitch, T., Cook, J. (2014). Modelling Public Transport Route Choice, with Multiple Access and Egress Modes. Transportation Research Procedia, 1 (1), 12–23. doi:10.1016/j.trpro.2014.07.003

Dolya, C. (2017). Modeling of passenger transport correspondence between regional centers in Ukraine. Technology Audit and Production Reserves, 1(2 (33)), 44–48. doi:10.15587/2312-8372.2017.93458

Dolya, C. (2017). Modeling of intercity passenger transportation system. Technology Audit and Production Reserves, 2(2 (34)), 37–43. doi:10.15587/2312-8372.2017.100465

Grigorova, T., Davіdіch, Yu., Dolya, V. (2015). Development of distribution model of passenger transportation volumes among suburban transport modes. Eastern-European Journal of Enterprise Technologies, 3(3 (75)), 10–14. doi:10.15587/1729-4061.2015.43381

Grigorova, T., Davіdіch, Yu., Dolya, V. (2015). Development of the model of the change in the passenger transport fatigue when approaching stopping points of suburban bus routes. Eastern-European Journal of Enterprise Technologies, 2(3 (74)), 4–9. doi:10.15587/1729-4061.2015.38583

Mao, L., Wu, X., Huang, Z., Tatem, A. J. (2015). Modeling monthly flows of global air travel passengers: An open-access data resource. Journal of Transport Geography, 48, 52–60. doi:10.1016/j.jtrangeo.2015.08.017

Dolya, C., Botsman, A., Kozhyna, V. (2017). Investigation of approaches to modeling of intercity passenger transportation system. Technology Audit and Production Reserves, 4(2 (36)), 24–28. doi:10.15587/2312-8372.2017.108889


GOST Style Citations


Spichkova, M. Formal Model for Intelligent Route Planning [Text] / M. Spichkova, M. Simic, H. Schmidt // Procedia Computer Science. – 2015. – Vol. 60. – P. 1299–1308. doi:10.1016/j.procs.2015.08.196

Deri, A. Efficient Usage of Transfer based System in Intracity Bus Transit Operation: Sample of Izmir [Text] / A. Deri, A. Kalpakci // Procedia – Social and Behavioral Sciences. – 2014. – Vol. 111. – P. 311–319. doi:10.1016/j.sbspro.2014.01.064

Dib, O. A multimodal transport network model and efficient algorithms for building advanced traveler information systems [Text] / O. Dib, M.-A. Manier, L. Moalic, A. Caminada // Transportation Research Procedia. – 2017. – Vol. 22. – P. 134–143. doi:10.1016/j.trpro.2017.03.020

Vissat, L. L. Finding Optimal Timetables for Edinburgh Bus Routes [Text] / L. L. Vissat, A. Clark, S. Gilmore // Electronic Notes in Theoretical Computer Science. – 2015. – Vol. 310. – P. 179–199. doi:10.1016/j.entcs.2014.12.018

Arhin, S. Optimization of transit total bus stop time models [Text] / S. Arhin, E. Noel, M. F. Anderson, L. Williams, A. Ribisso, R. Stinson // Journal of Traffic and Transportation Engineering (English Edition). – 2016. – Vol. 3, No. 2. – P. 146–153. doi:10.1016/j.jtte.2015.07.001

Bohari, Z. Improving the Quality of Public Transportation System: Application of Simulation Model for Passenger Movement [Text] / Z. A. Bohari, S. Bachok, M. M. Osman // Procedia – Social and Behavioral Sciences. – 2014. – Vol. 15. – P. 542–552. doi:10.1016/j.sbspro.2014.10.087

Haar, S. A Hybrid-Dynamical Model for Passenger-flow in Transportation Systems**This research work has been carried out under the leadership of the Technological Research Institute SystemX, and therefore granted with public funds within the scope of the French Program «Investissements d’Avenir» [Text] / S. Haar, S. Theissing // IFAC-PapersOnLine. – 2015. – Vol. 48, No. 27. – P. 236–241. doi:10.1016/j.ifacol.2015.11.181

Sun, D. Timetable optimization for single bus line based on hybrid vehicle size model [Text] / D. Sun, Y. Xu, Z.-R. Peng // Journal of Traffic and Transportation Engineering (English Edition). – 2015. – Vol. 2, No. 3. – P. 179–186. doi:10.1016/j.jtte.2015.03.006

Vrtic, M. Two-dimensionally constrained disaggregate trip generation, distribution and mode choice model: Theory and application for a Swiss national model [Text] / M. Vrtic, P. Frohlich, N. Schussler, K. W. Axhausen, D. Lohse, C. Schiller, H. Teichert // Transportation Research Part A: Policy and Practice. – 2007. – Vol. 41, No. 9. – P. 857–873. doi:10.1016/j.tra.2006.10.003

Rwakarehe, E. E. Development of a Freight Demand Model for the Province of Alberta Using Public Sources of Data [Text] / E. E. Rwakarehe, M. Zhong, J. Christie // Procedia – Social and Behavioral Sciences. – 2014. – Vol. 138. – P. 695–705. doi:10.1016/j.sbspro.2014.07.263

Fornalchyk, Ye. The Model of Correspondence of Passenger Transportation on the Basis of Fuzzy Logic [Text] / Ye. Fornalchyk, A. Bilous, I. Demchuk // ECONTECHMOD: An International Quarterly Journal on Economics of Technology and Modelling Processes. – 2015. – Vol. 4, No. 2. – P. 59–64.

Grosche, T. Gravity models for airline passenger volume estimation [Text] / T. Grosche, F. Rothlauf, A. Heinzl // Journal of Air Transport Management. – 2007. – Vol. 13, No. 4. – P. 175–183. doi:10.1016/j.jairtraman.2007.02.001

Wu, C. The impact of route network expansion on airport attractiveness: a case study of Chubu international airport in Japan [Text] / C. Wu, J. Han, Y. Hayashi // Proceedings of the 2011 World Conference of Air Transport Research Society. – 2011. – P. 1–14.

Hu, Y. A Model Layout Region Optimization for Feeder Buses of Rail Transit [Text] / Y. Hu, Q. Zhang, W. Wang // Procedia – Social and Behavioral Sciences. – 2012. – Vol. 43. – P. 773–780. doi:10.1016/j.sbspro.2012.04.151

Fonzone, A. A Model of Bus Bunching under Reliability-based Passenger Arrival Patterns [Text] / A. Fonzone, J.-D. Schmocker, R. Liu // Transportation Research Procedia. – 2015. – Vol. 7. – P. 276–299. doi:10.1016/j.trpro.2015.06.015

Zhang, C. Bus Dwell Time Estimation and Prediction: A Study Case in Shanghai-China [Text] / C. Zhang, J. Teng // Procedia – Social and Behavioral Sciences. – 2013. – Vol. 96. – P. 1329–1340. doi:10.1016/j.sbspro.2013.08.151

Dave, S. M. Modeling Trip Attributes and Feasibility Study of co-ordinated Bus for School Trips of Children [Text] / S. M. Dave, D. P. Raykundaliya, S. N. Shah // Procedia – Social and Behavioral Sciences. – 2013. – Vol. 104. – P. 650–659. doi:10.1016/j.sbspro.2013.11.159

Richter, C. Modelling Mode Choice in Passenger Transport with Integrated Hierarchical Information Integration [Text] / C. Richter, S. Keuchel // Journal of Choice Modelling. – 2012. – Vol. 5, No. 1. – P. 1–21. doi:10.1016/s1755-5345(13)70045-9

Kabashkin, I. Modelling of Regional Transit Multimodal Transport Accessibility with Petri Net Simulation [Text] / I. Kabashkin // Procedia Computer Science. – 2015. – Vol. 77. – P. 151–157. doi:10.1016/j.procs.2015.12.373

Essadeq, I. Modelling Passenger Congestion in Transit System – Benchmark and Three Case Studies [Text] / I. Essadeq, E. Dubail, E. Jeanniere // Transportation Research Procedia. – 2016. – Vol. 14. – P. 1792–1801. doi:10.1016/j.trpro.2016.05.145

Brands, T. Modelling Public Transport Route Choice, with Multiple Access and Egress Modes [Text] / T. Brands, E. de Romph, T. Veitch, J. Cook // Transportation Research Procedia. – 2014. – Vol. 1, No. 1. – P. 12–23. doi:10.1016/j.trpro.2014.07.003

Dolya, C. Modeling of passenger transport correspondence between regional centers in Ukraine [Text] / C. Dolya // Technology Audit and Production. – 2017. – Vol. 1, No. 2 (33). – P. 44–48. doi:10.15587/2312-8372.2017.93458

Dolya, C. Modeling of intercity passenger transportation system [Text] / C. Dolya // Technology Audit and Production Reserves. – 2017. – Vol. 2, No. 2 (34). – P. 37–43. doi:10.15587/2312-8372.2017.100465

Grigorova, T. Development of distribution model of passenger transportation volumes among suburban transport modes [Text] / T. Grigorova, Yu. Davіdіch, V. Dolya // Eastern-European Journal of Enterprise Technologies. – 2015. – Vol. 3, No. 3 (75). – P. 10–14. doi:10.15587/1729-4061.2015.43381

Grigorova, T. Development of the model of the change in the passenger transport fatigue when approaching stopping points of suburban bus routes [Text] / T. Grigorova, Yu. Davіdіch, V. Dolya // Eastern-European Journal of Enterprise Technologies. – 2015. – Vol. 2, No. 3 (74). – P. 4–9. doi:10.15587/1729-4061.2015.38583

Mao, L. Modeling monthly flows of global air travel passengers: An open-access data resource [Text] / L. Mao, X. Wu, Z. Huang, A. J. Tatem // Journal of Transport Geography. – 2015. – Vol. 48. – P. 52–60. doi:10.1016/j.jtrangeo.2015.08.017

Dolya, C. Investigation of approaches to modeling of intercity passenger transportation system [Text] / C. Dolya, A. Botsman, V. Kozhyna // Technology audit and production reserves. – 2017. – Vol. 4, No. 2 (36). – P. 24–28. doi:10.15587/2312-8372.2017.108889



 

Cited-by:

1. SIMULATION MODELING OF PARAMETERS OF FUNCTIONING OF RAILWAY PROJECTS
О. Dolia, К. Dolia
Municipal economy of cities  Vol: 1  Issue: 154  First page: 133  Year: 2020  
doi: 10.33042/2522-1809-2020-1-154-133-137

2. DETERMINATION OF LAWS OF CHANGE OF PARAMETERS OF THE TRANSPORT SYSTEM
О. Dolia, К. Dolia
Municipal economy of cities  Vol: 1  Issue: 154  First page: 138  Year: 2020  
doi: 10.33042/2522-1809-2020-1-154-138-142





Copyright (c) 2017 Olena Dolia, Kostiantyn Dolia, Yuri Davidich, Sergey Lyfenko, Olena Uhodnikova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 2664-9969, ISSN (on-line) 2706-5448