Substatiation of quantitative criteria of structural parts and units manufacturability evaluation

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.129676

Keywords:

level of technological design of constructions, criteria for assemblability evaluation, criteria for maintainability evaluation

Abstract

The object of research is assemblability and maintainability of structures. Criteria for assessing such important parameters of design manufacturability are an extremely complex problem in the design process. The result of the design should be the embodiment of the idea in the form of a product. Low manufacturability significantly complicates this process, or even makes it impossible.

One of the most problematic places in determining the criteria for assemblability and maintainability of structures is that their list differs depending on the design. With the increase in the number of details in the design, the process of determining the criteria and their quantitative assessment are significantly more complicated.

The formalization of the criteria for manufacturability makes it possible to reduce the optimization process to a single algorithm, which has a high degree of automation. The potential for implementing the theory in CAD systems has become the starting point for the research.

The use of research results, namely the formulated theorems of assemblability and maintainability, allows to optimize the design and evaluate the results of optimization qualitatively and quantitatively. It is advisable to use the indicated results for structures, the production of which provides for seriality – mass production and large-scale production. Under such conditions, the economic effect of the optimization is most palpable.

Another advantage of the study is the answer to the question – in which the greatest number of design elements can achieve maximum assemblability and maintainability? The formulated conclusions make changes in the design algorithm and program the level of its optimality already in the design. It is this approach that reduces the level of material costs already at the design stages, technological preparation of production, and, directly, in production.

The actual result of applying the developed optimization technique is increasing the manufacturability of the investigated structures from 30 to 50 %. In comparison with the known analogs, a basis has been created for the establishment and complex analysis of the manufacturability criteria as a result of the interaction of assemblability and maintainability.

Author Biographies

Yaroslav Yarosh, Zhytomyr National Agroecological University, 7, Stary Boulevard, Zhytomyr, Ukraine, 10008

PhD, Assistant Professor, Dean of the Faculty

Faculty of Engineering and Energy

Nataliya Tsyvenkova, Zhytomyr National Agroecological University, 7, Stary Boulevard, Zhytomyr, Ukraine, 10008

PhD, Associate Professor

Department of Mechanics and Agroecosystems Engineering

Savelii Kukharets, Zhytomyr National Agroecological University, 7, Stary Boulevard, Zhytomyr, Ukraine, 10008

Doctor of Technical Sciences, Assistant Professor, Head of the Department

Department of Mechanics and Agroecosystems Engineering

Anna Нolubenko, Zhytomyr National Agroecological University, 7, Stary Boulevard, Zhytomyr, Ukraine, 10008

Assistant

Department of Electrification, Automation of Production and Engineering Ecology

Leonid Los, Zhytomyr National Agroecological University, 7, Stary Boulevard, Zhytomyr, Ukraine, 10008

Doctor of Technical Sciences, Professor

Department of Mechanics and Agroecosystems Engineering

References

  1. DSTU ISO 9001-95 (GOST 14.202-73). Systemy yakosti. Model zabezpechennia yakosti v protsesi proektuvannia, rozroblennia, montazhu ta obsluhovuvannia. (1996). Introduced from July 1, 1996. Kyiv, 30.
  2. DSTU 3974-2000 (GOST 14.201-73). Systemy rozroblennia ta postavlennia produktsii na vyrobnytstvo. Pravyla vykonannia doslidno-konstruktorskykh robit. (2000). Introduced from November 27, 2000. Kyiv, 38.
  3. DSTU 3021-95. Vyprobovuvannia i kontrol yakosti produktsii. Terminy ta vyznachennia. (1996). Introduced from January 1, 1996. Kyiv, 73.
  4. DSTU 3278-95. Systema rozroblennia i postavlennia produktsii na vyrobnytstvo. Osnovni terminy ta vyznachennia. (1997). Introduced from February 27, 1995. Kyiv, 64.
  5. Enke, J., Glass, R., Metternich, J. (2017). Introducing a Maturity Model for Learning Factories. Procedia Manufacturing, 9, 1–8. doi:10.1016/j.promfg.2017.04.010
  6. Abele Abele, E., Metternich, J., Tisch, M., Chryssolouris, G., Sihn, W., ElMaraghy, H. et al. (2015). Learning Factories for Research, Education, and Training. Procedia CIRP, 32, 1–6. doi:10.1016/j.procir.2015.02.187
  7. Liu, Y., Zhao, T., Ju, W., Shi, S. (2017). Materials discovery and design using machine learning. Journal of Materiomics, 3 (3), 159–177. doi:10.1016/j.jmat.2017.08.002
  8. Los, L., Kukharets, S., Tsyvenkova, N., Нolubenko, A., Tereshchuk, M. (2017). Substantiation of the structure theory of design of technological machines and devices. Technology Audit and Production Reserves, 5 (1 (37)), 48–55. doi:10.15587/2312-8372.2017.113003
  9. Moldavska, A., Martinsen, K. (2018). Defining Sustainable Manufacturing Using a Concept of Attractor as a Metaphor. Procedia CIRP, 67, 93–97. doi:10.1016/j.procir.2017.12.182
  10. Vasilevskyi, O. M., Ihnatenko, O. H. (2013). Normuvannia pokaznykiv nadiinosti tekhnichnykh zasobiv. Vinnytsia: VNTU, 160.
  11. Kretschmer, R., Pfouga, A., Rulhoff, S., Stjepandic, J. (2017). Knowledge-based design for assembly in agile manufacturing by using Data Mining methods. Advanced Engineering Informatics, 33, 285–299.
  12. Chapra, S., Canale, R. (2014). Numerical Methods for Engineers. New York: McGraw-Hill Education, 992.
  13. Stock, T., Kohl, H. (2018). Perspectives for International Engineering Education: Sustainable-oriented and Transnational Teaching and Learning. Procedia Manufacturing, 21, 10–17. doi:10.1016/j.promfg.2018.02.089
  14. Stratulat, S. (2017). Mechanically certifying formula-based Noetherian induction reasoning. Journal of Symbolic Computation, 80, 209–249. doi:10.1016/j.jsc.2016.07.014
  15. Aleksandrov, P. S. (1977). Vvedenie v teoriyu mnozhestv i obshhuyu topologiyu. Moscow: Nauka, 368.
  16. Liu, Z. (1991). The epistemological basis of industrial designing. Design Studies, 12 (2), 109–113. doi:10.1016/0142-694x(91)90053-y
  17. Sigorskiy, V. P. (1975). Matematicheskiy apparat іnzhenera. Kyiv: Tekhnika, 768.
  18. Cattaneo, M. E. G. V. (2017). The likelihood interpretation as the foundation of fuzzy set theory. International Journal of Approximate Reasoning, 90, 333–340. doi:10.1016/j.ijar.2017.08.006
  19. Kaufman, A., Itskovich, G. (2017). Geometrical Factor Theory of Induction Logging. Basic Principles of Induction Logging, 173–226. doi:10.1016/b978-0-12-802583-3.00006-x
  20. Kuru, S., Negro, J., Ragnisco, O. (2017). The Perlick system type I: From the algebra of symmetries to the geometry of the trajectories. Physics Letters A, 381 (39), 3355–3363. doi:10.1016/j.physleta.2017.08.042
  21. Lavrov, I., Maksimova, L.; Corsi, G. (Ed.). (2003). Problems in Set Theory, Mathematical Logic and the Theory of Algorithms. Springer, 282. doi:10.1007/978-1-4615-0185-5
  22. Maciejewski, A. J., Przybylska, M., Tsiganov, A. V. (2011). On algebraic construction of certain integrable and super-integrable systems. Physica D: Nonlinear Phenomena, 240 (18), 1426–1448. doi:10.1016/j.physd.2011.05.020
  23. Demin, D. A. (2014). Mathematical description typification in the problems of synthesis of optimal controller of foundry technological parameters. Eastern-European Journal of Enterprise Technologies, 1 (4 (67)), 43–56. doi:10.15587/1729-4061.2014.21203
  24. Zyelyk, Y. I. (2000). Convergence of a matrix gradient algorithm of solution of extremal problem under constraints. Journal of Automation and Information Sciences, 32 (9), 34–41.
  25. Poltavets, V. I., Yaziev, A. S. (17.04.2006). Hazohenerator dlia hazyfikatsii tverdoho palyva. Patent No. 75529 UA, MPK S10J3/20, C10J3/32. Appl. No. u20040907430. Filed: 10.09.2004. Bull. No. 4.
  26. Tsyvenkova, N. M., Holubenko, A. A. (10.12.2014). Sposib formuvannia zony horinnia i hazyfikatsii ta hazohenerator dlia yoho zdiisnennia. Patent No. 107219 UA, MPK S10J3/20, C10J3/32, B01J7/00, F23C7/00. Appl. No. a201211797. Filed: 12.10.2012. Bull. No. 23.
  27. Kargapolov, M. I., Merzlyakov, Yu. I. (1977). Osnovy teorii grupp. Moscow: Nauka, 240.
  28. Pokras, O. (2017). Analysis of the Ukrainian instrument-making industry international competitiveness using porter’s diamond. Technology Audit and Production Reserves, 4 (5 (36)), 31–36. doi:10.15587/2312-8372.2017.109114
  29. Matviichuk, I. (2015). Modern state and prospects for development of instrument-making industry in Ukraine. Global and National Problems of Economy, 3, 360–365.
  30. Borisov, V. M., Borisov, S. B. (2016). Otsenka urovnya standartizatsii i unifikatsii izdeliy mashinostroeniya. Vestnik Tekhnologicheskogo universiteta, 19 (3), 93–94.
  31. Tipovaya metodika opredeleniya urovnya standartizatsii i unifikatsii izdeliy RD 33-74. (1975). Moscow: Izdatel'stvo standartov, 42.

Published

2017-12-28

How to Cite

Yarosh, Y., Tsyvenkova, N., Kukharets, S., Нolubenko A., & Los, L. (2017). Substatiation of quantitative criteria of structural parts and units manufacturability evaluation. Technology Audit and Production Reserves, 2(1(40), 4–11. https://doi.org/10.15587/2312-8372.2018.129676

Issue

Section

Mechanical Engineering Technology: Original Research