DOI: https://doi.org/10.15587/2312-8372.2019.154561

Optimization of the method of constructing reference plans of multimodal transport problem

Serhii Zabolotnii, Sergii Mogilei

Abstract


The classical transport problem is in determination of the optimal plan for the transportation of goods from the points of departure to the points of delivery, taking into account the criterion of the minimum cost of such transportation. Such a problem takes into account only one type of transport, which does not fully correspond to the practical needs of modern logistics enterprises. That is why the object of this research is the classical transport problem, the formulation of which takes into account the presence of several means of cargo delivery, namely: automobile, railway and water. This type of transport problem is defined as multimodal.

The implementation of the multimodal transport problem involves the use of various numerical methods and is carried out using software. In fact, the conceptual approach to its solution is a simple selection of possible results. Given the large dimension of the problem, such an approach can be extremely cumbersome, and therefore requires some improvement.

During the study, the method for constructing a reference plan for such a problem was optimized based on the criterion of minimizing the number of numerical iterations, and the advantages of the proposed approach compared to those already known were substantiated. The basis of the new approach is the previously known minimal element method, which is to be used to solve the transportation problem, and an analogy with the Steiner problem was drawn. The latter, in turn, made it possible to define a new approach as the Steiner method.

The research result is development of a general algorithm for the implementation of the proposed Steiner method. As an approbation of this algorithm, a model example is provided. It demonstrated the identity of the results of solving a multimodal transport problem using all the methods discussed in the article.

The development of new methods for the implementation of the multimodal transport problem will make it possible to construct efficient algorithms for solving more complex problems of transport logistics. The criterion for reducing the number of numerical iterations, used at all stages of the implementation of such problems, significantly reduces the time to search for their solutions.


Keywords


multimodal transport problem; reference plan; optimization criterion; business model

References


Pasichnyk, V. I., Hrysiuk, Yu. S., Patsora, O. V. (2013). Efektyvnist intermodalnykh perevezen yak element zabezpechennia vysokoi yakosti transportnykh posluh. Upravlinnia proektamy, systemnyi analiz i lohistyka. Tekhnichna seriia, 12, 125–131.

Shcherbyna, R. S. (2015). Metodolohichnyi aspekt osnovnykh elementiv zmishanykh perevezen eksportnykh vantazhiv. Zbirnyk naukovykh prats DETUT. Seriia «Transportni systemy ta tekhnolohii», 26-27, 242–249.

Lin, C.-C., Lin, S.-W. (2016). Two-stage approach to the intermodal terminal location problem. Computers & Operations Research, 67, 113–119. doi: http://doi.org/10.1016/j.cor.2015.09.009

Slavova-Nocheva, M. (2012). Competitiveness of the transport market in Bulgaria. Ikonomicheski Izsledvania, 21 (3).

Storozhev, V. V. (2008). Optymizatsiia parametriv transportnykh zasobiv v multymodalnykh systemakh dostavky vantazhiv. Odessa: Odeskyi natsionalnyi morskyi universytet, 22.

Ayed, H., Galvez-Fernandez, C., Habbas, Z., Khadraoui, D. (2011). Solving time-dependent multimodal transport problems using a transfer graph model. Computers & Industrial Engineering, 61 (2), 391–401. doi: http://doi.org/10.1016/j.cie.2010.05.018

Ayed, H., Habbas, Z., Khadraoui, D., Galvez-Fernandez, C. (2011). A parallel algorithm for solving time dependent multimodal transport problem. IEEE Conference on Intelligent Transportation Systems, ITSC, 722–727. doi: http://doi.org/10.1109/itsc.2011.6082973

Flórez, J. E., Torralba, Á., García, J., Linares López, C., García-Olaya, Á., Borrajo, D. (2010).TIMIPLAN: An Application to Solve Multimodal Transportation Problems. Scheduling and Planning Applications Workshop (SPARK).

Zelenika, R., Sever, D., Zebec, S., Pirš, B. (2005). Logistic operator – fundamental factor in rational production of services in multimodal transport. Promet – Traffic – Traffico. URL: https://trid.trb.org/view/755378

Elias, D., Nadler, B., Nadler, F., Hauger, G. (2016). OPTIHUBS – Multimodal Hub Process Optimization by Means of Micro Simulation. Transportation Research Procedia, 14, 457–466. doi: http://doi.org/10.1016/j.trpro.2016.05.098

García, J., Florez, J. E., Torralba, Á., Borrajo, D., López, C. L., García-Olaya, Á., Sáenz, J. (2013). Combining linear programming and automated planning to solve intermodal transportation problems. European Journal of Operational Research, 227 (1), 216–226. doi: http://doi.org/10.1016/j.ejor.2012.12.018

Zhaldak, M. I., Tryus, Yu. V. (2005). Osnovy teorii i metodiv optymizatsii. Cherkasy: Brama-Ukraina, 608.

Romanovskiy, I. V. (2004). Zadacha Shteynera na grafakh i dinamicheskoe programmirovanie. Komp'yuternye instrumenty v obrazovanii, 2, 80–86.


GOST Style Citations


Pasichnyk V. I., Hrysiuk Yu. S., Patsora O. V. Efektyvnist intermodalnykh perevezen yak element zabezpechennia vysokoi yakosti transportnykh posluh // Upravlinnia proektamy, systemnyi analiz i lohistyka. Tekhnichna seriia. 2013. Issue 12. P. 125–131.

Shcherbyna R. S. Metodolohichnyi aspekt osnovnykh elementiv zmishanykh perevezen eksportnykh vantazhiv // Zbirnyk naukovykh prats DETUT. Seriia «Transportni systemy ta tekhnolohii». 2015. Issue 26-27. P. 242–249.

Lin C.-C., Lin S.-W. Two-stage approach to the intermodal terminal location problem // Computers & Operations Research. 2016. Vol. 67. P. 113–119. doi: http://doi.org/10.1016/j.cor.2015.09.009 

Slavova-Nocheva M. Competitiveness of the transport market in Bulgaria // Ikonomicheski Izsledvania. 2012. Vol. 21, Issue 3.

Storozhev V. V. Optymizatsiia parametriv transportnykh zasobiv v multymodalnykh systemakh dostavky vantazhiv: Abstract's PhD thesis. Odessa: Odeskyi natsionalnyi morskyi universytet, 2008. 22 p.

Solving time-dependent multimodal transport problems using a transfer graph model / Ayed H. et. al. // Computers & Industrial Engineering. 2011. Vol. 61, Issue 2. P. 391–401. doi: http://doi.org/10.1016/j.cie.2010.05.018 

A parallel algorithm for solving time dependent multimodal transport problem: Proceedings / Ayed H. et. al. // IEEE Conference on Intelligent Transportation Systems, ITSC. 2011. P. 722–727. doi: http://doi.org/10.1109/itsc.2011.6082973 

TIMIPLAN: An Application to Solve Multimodal Transportation Problems / Flórez J. E. et. al. // Scheduling and Planning Applications Workshop (SPARK). 2010.

Logistic operator – fundamental factor in rational production of services in multimodal transport / Zelenika R. et. al. // Promet – Traffic – Traffico. 2005. URL: https://trid.trb.org/view/755378

OPTIHUBS – Multimodal Hub Process Optimization by Means of Micro Simulation / Elias D. et. al. // Transportation Research Procedia. 2016. Vol. 14. P. 457–466. doi: http://doi.org/10.1016/j.trpro.2016.05.098 

Combining linear programming and automated planning to solve intermodal transportation problems / García J. et. al. // European Journal of Operational Research. 2013. Vol. 227, Issue 1. P. 216–226. doi: http://doi.org/10.1016/j.ejor.2012.12.018 

Zhaldak M. I., Tryus Yu. V. Osnovy teorii i metodiv optymizatsii: textbook. Cherkasy: Brama-Ukraina, 2005. 608 p.

Romanovskiy I. V. Zadacha Shteynera na grafakh i dinamicheskoe programmirovanie // Komp'yuternye instrumenty v obrazovanii. 2004. Issue 2. P. 80–86.







Copyright (c) 2019 Serhii Zabolotnii, Sergii Mogilei

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 2226-3780, ISSN (on-line) 2312-8372