Substantiation of technologies and technical means for disposal of mining and metallurgical waste in mines
DOI:
https://doi.org/10.15587/2706-5448.2020.200897Keywords:
underground mining, hardening mixture, pipeline transport, vibration, mechanical and electrical activation of componentsAbstract
The object of research is environmental and resource-saving technologies in underground mining of mineral deposits with the laying of the developed space. One of the most problematic places is the delivery of hardening filling mixtures to the place of their installation and the lack of components for their preparation. This increases the importance of managing the state of ore-bearing massifs and the preservation of the earth’s surface.
The paper presents the main scientific and practical results of the substantiation of technologies and technical means for the disposal of mining and metallurgical production wastes into underground mined spaces (man-made voids) as components of hardening filling mixtures. Methods of theoretical generalizations are described using mathematical statistics, physical and mathematical modeling, with calculations and feasibility studies, laboratory and field experimental studies, industrial tests in operating enterprises. It is established that the use of vibration, mechanical and electroactivation of the components of the hardening filling mixture in mining enterprises leads to an increase in the activity of substandard materials by up to 10–40 % for each device. In particular, the enrichment of substandard inert materials at the vibrating screen GV-1.2/3.2 (Ukraine) increases the activity by 15–20 %. It is proved that the activation of binders (blast furnace granulated slag) in the DU-65 disintegrator (Disintegrator, Estonia) increases the activity of the binder by 20–25 %, with the output of the active class of fractions of 0.074 mm in size – by 55 % versus 40 % in ball mills. Vibration transport unit are recommended, which increase the activity of the solid components of the hardening filling mixture by 10–15 %, and electrodialysis apparatus for activating mixing water increase its activity by 30–40 %. It is shown that the use of vibration gravity transport systems ensures the filling of the filling mixture at a distance exceeding the height of the vertical stand by 15–20 times. A set of technical means is proposed for activating the components of hardening filling mixtures (binder, inert aggregate and electrochemically purified mine mixing water) during the manufacture and transportation of them to the installation site. This complex was introduced at such mining enterprises as:
– State Enterprise «Eastern Mining and Processing Plant» and Balaklava Mining Administration (Ukraine);
– Joint-stock company «Tselinnyi Mining and Chemical Combine» (Republic of Kazakhstan);
– Public Joint-Stock Company «Priargunsky Industrial Mining and Chemical Association» and Closed Joint-Stock Company «Uralzoloto» (Russian Federation) in other developed mining countries.
References
- Gridley, N. C., Salcedo, L. (2011). Cemented paste production provides opportunity for underground ore recovery while solving tailings disposal needs. Australian Centre for Geomechanics. Perth, 431.
- Golik, V. I. (2013). Kontseptualnye podkhody k sozdaniiu malo- i bezotkhodnogo gornorudnogo proizvodstva na osnove kombinirovaniia fiziko-tekhnicheskikh i fiziko-khimicheskikh geotekhnologii. Gornyi zhurnal, 5, 93–97.
- Lyashenko, V., Khomenko, O., Topolnij, F., Golik, V. (2020). Development of natural underground ore mining technologies in energy distributed massifs. Technology Audit and Production Reserves, 1 (3 (51)), 17–24. doi: http://doi.org/10.15587/2312-8372.2020.195946
- Lyashenko, V., Khomenko, O., Golik, V., Topolny, F., Helevera, O. (2020). Substantiation of environmental and resource-saving technologies for void filling under underground ore mining. Technology Audit and Production Reserves, 2 (3 (51)), 9–16. doi: http://dx.doi.org/10.15587/2312-8372.2020
- Golik, V. I., Hasheva, Z. M. (2015). Economical Efficiency of Utilization of Allied Mining Enterprises Waste. The Social Sciences, 10 (5), 682–686.
- Golik, V., Doolin, A., Komissarova, M., Doolin, R. (2015). Evaluating the Effectiveness of Utilization of Mining Waste. International Business Management, 9 (5), 1993–5250.
- Golik, V., Komashchenko, V., Morkun, V. (2015). Feasibility of using the mill tailings for preparation of self-hardening mixtures. Metallurgical and Mining Industry, 3, 38–41.
- Golik, V., Komashchenko, V., Morkun, V. (2015). Innovative technologies of metal extraction from the ore processing mill tailings and their integrated use. Metallurgical and Mining Industry, 3, 49–52.
- Khint, I. A. (1981). UDA- tekhnologiia: problemy i perspektivy. Tallin, 87.
- Sleptsov, M. N., Azimov, R. Sh., Mosinets, V. N. (1986). Podzemnaia razrabotka mestorozhdenii tsvetnykh i redkikh metallov. Moscow: Nedra, 206.
- Liashenko, V. I., Golik, V. I., Kolokolov, O. V. (1994). Sozdanie i vnedrenie prirodo- i resursosberegaiuschikh tekhnologii podzemnoi razrabotki mestorozhdenii slozhnoi struktury. Izv. vuzov. Gornyi zhurnal, 4, 31–37.
- Liashenko, V. I., Golik, V. I. (2006). Prirodookhrannye tekhnologii podzemnoi razrabotki uranovykh mestorozhdenii. Gornyi zhurnal, 2, 89–92.
- Liashenko, V. I., Golik, V. I., Kozyrev, E. N. (2008). Kombinirovaannye tekhnologii dobychi poleznykh iskopaemykh s podzemnym vyschelachivaniem. Gornyi zhurnal, 12, 37–40.
- Yuan, Y., Bolan, N., Prévoteau, A., Vithanage, M., Biswas, J. K., Ok, Y. S., Wang, H. (2017). Applications of biochar in redox-mediated reactions. Bioresource Technology, 246, 271–281. doi: http://doi.org/10.1016/j.biortech.2017.06.154
- Kotenko, E. A., Mosinets, V. N. (1995). Radiatsionno-ekologicheskaia bezopasnost pri dobyche i pererabotke uranovykh rud. Gornyi zhurnal, 7, 32–36.
- Lomonosov, G. G., Polonik P. I., Abdalakh, Kh. (2000). Sovershenstvovanie tekhnologii ochistnykh rabot na osnove primeneniia pastoobraznykh zakladochnykh materialov. Gornyi zhurnal, 2, 21–23.
- Chernov, A. P. (Ed.) (2001). Dobycha i pererabotka uranovikh rud v Ukraine. Kyiv: Adef – Ukraina, 238.
- Kvitka, V. V., Sergeev, V. E., Troter, K. et. al. (2001). Tverdeiuschie zakladochnye smesi povyshennoi plotnosti. Gornyi zhurnal, 5, 33–35.
- Lottermoser, B. (2012). Mine Wastes: Characterization, Treatment and Environmental Impacts. New York: Springer, 400.
- Maanju, S. K. (2013). Impact of Mining Industry on Environmental Fabric -A Case Study of Rajasthan State in India. IOSR Journal Of Environmental Science, Toxicology And Food Technology, 6 (2), 8–13. doi: http://doi.org/10.9790/2402-0620813
- Liashenko, V. I., Franchuk, V. P. (2017). Hardening stowage mixture components activation efficiency improvement in vibration pipeline transport plants. Izvestiia vysshikh uchebnykh zavedenii. Gornyi zhurnal, 4, 92–100.
- Lyashenko, V. I., Golik, V. I. (2017). Scientific and engineering supervision of uranium production development. achievements and challenges. Mining informational and analytical bulletin, 7, 137–152. doi: http://doi.org/10.25018/0236-1493-2017-7-0-137-152
- Chowdhury, S. R., Yanful, E. K., Pratt, A. R. (2014). Recycling of nickel smelter slag for arsenic remediation - an experimental study. Environmental Science and Pollution Research, 21 (17), 10096–10107. doi: http://doi.org/10.1007/s11356-014-2892-x
- Modaihsh, A. S., Mahjoub, M. O., Nadeem, M. E. A., Ghoneim, A. M., Al-Barakah, F. N. (2016). The Air Quality, Characterization of Polycyclic Aromatic Hydrocarbon, Organic Carbon, and Diurnal Variation of Particulate Matter over Riyadh City. Journal of Environmental Protection, 7 (9), 1198–1209. doi: http://doi.org/10.4236/jep.2016.79107
- Beiyuan, J., Awad, Y. M., Beckers, F., Tsang, D. C. W., Ok, Y. S., Rinklebe, J. (2017). Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere, 178, 110–118. doi: http://doi.org/10.1016/j.chemosphere.2017.03.022
- Deng, D. Q., Liu, L., Yao, Z. L., Song, K. I.-I. L., Lao, D. Z. (2017). A practice of ultra-fine tailings disposal as filling material in a gold mine. Journal of Environmental Management, 196, 100–109. doi: http://doi.org/10.1016/j.jenvman.2017.02.056
- Vrancken, C., Longhurst, P. J., Wagland, S. T. (2017). Critical review of real-time methods for solid waste characterisation: Informing material recovery and fuel production. Waste Management, 61, 40–57. doi: http://doi.org/10.1016/j.wasman.2017.01.019
- Cheng, Y., Jiang, H., Zhang, X., Cui, J., Song, C., Li, X. (2017). Effects of coal rank on physicochemical properties of coal and on methane adsorption. International Journal of Coal Science & Technology, 4 (2), 129–146. doi: http://doi.org/10.1007/s40789-017-0161-6
- Paul, A., Ramachandra Murthy, V. M. S., Prakash, A., Singh, A. K. (2018). Estimation of Rock Load in Development Workings of Underground Coal Mines – A Modified RMR Approach. Current Science, 114 (10), 2167–2174. doi: http://doi.org/10.18520/cs/v114/i10/2167-2174
- Soroka, M. N., Savelev, Iu. Ia. (2004). Perspektivy utilizatsii khvostov gidrometallurgicheskogo peredela i droblennykh gornykh porod v vyrabotannoe prostranstvo uranodobyvaiuschikh shakht Ukrainy. Metallurgicheskaia i gornorudnaia promyshlennost, 5, 91–94.
- Gusev, Iu. P., Berezikov, E. P., Krupnik, L. A. et. al. (2008). Resursosberegaiuschie tekhnologii dobychi rudy na Malevskom rudnike Zyrianovskogo GOKa (AO «Kaztsink»). Gornyi zhurnal, 11, 20–22.
- Kutepov, Iu. I., Kutepova, N. A., Zharikov, V. P. (2011). Inzhenerno–geologicheskoe i ekologicheskoe obosnovanie rekultivatsii gidrootvalov Kuzbassa. Gornyi informatsionno-analiticheskii biulleten, 2, 34–42.
- Trubetskoy, K. N., Kaplunov, D. R., Ryl’nikova, M. V. (2012). Problems and prospects in the resource-saving and resource-reproducing geotechnology development for comprehensive mineral wealth development. Journal of Mining Science, 48 (4), 688–693. doi: http://doi.org/10.1134/s1062739148040132
- Averianov, K. A., Angelov, V. A., Akhmedianov, I. Kh., Rylnikova, M. V. (2012). Razvitie klassifikatsii tekhnogennogo syria gornykh predpriiatii i obosnovanie tekhnologii ego aktivnoi utilizatsii. Gornyi informatsionno-analiticheskii biulleten, 5, 208–213.
- Bratukhina, N. A., Plotnikov, I. S.. Demchenko, I. I. (2015). Selection of the optimal values of the parameters of the screen with the cable moving field. Izvestiia vuzov. Gornyi zhurnal, 3, 111–118.
- Komaschenko, V. I. (2016). Creating blasting technology which decreasing environmental detrimental effect. Izvestiia Tulskogo gosudarstvennogo universiteta. Nauki o Zemle, 1, 34–43.
- Kaplunov, D. R., Radchenko, D. N. (2017). Design philosophy and choice of technologies for sustainable development of underground mines. Gornyi Zhurnal, 11, 52–59. doi: http://doi.org/10.17580/gzh.2017.11.10
- Lyashenko, V. I., Dyatchin, V. Z., Lisovoy, I. A. (2018). Increase of Environmental Safety of Mining Production on the Basis of Waste Utilization of Extraction and Processing of Ore Raw Materials. Ecology and Industry of Russia, 22 (4), 4–10. doi: http://doi.org/10.18412/1816-0395-2018-4-4-10
- Krupskaya, L. T., Golubev, D. A., Rastanina, N. K., Filatova, M. Y. (2019). Reclamation of tailings storage surface at a closed mine in the Primorsky Krai by bio remediation. Mining Informational and Analytical Bulletin, 9, 138–148. doi: http://doi.org/10.25018/0236-1493-2019-09-0-138-148
- Volkov, E. P., Anushenkov, A. N. (2019). Developing the technology of mine stowing with processing tailings based hardening blends. Izvestiya vysshikh uchebnykh zavedenii gornyi zhurnal, 7, 5–13. doi: http://doi.org/10.21440/0536-1028-2019-7-5-13
- Lyashenko, V. I., Khomenko, O. E. (2019). Enhancement of confined blasting of ore. Mining Informational and Analytical Bulletin, 11, 59–72. doi: http://doi.org/10.25018/0236-1493-2019-11-0-59-72
- Liashenko, V. I., Golik, V. I. (2020). Combined geotechnologies for preconcentration of ore reserves by leaching of metals from ore raw materials. Marksheideriia i nedropolzovanie, 2 (106), 16–23.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Vasil Lyashenko, Oleh Khomenko, Fedor Topolnij, Olha Helevera
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.