Numerical research of stability in Lotka-Volterra systems with perturbed right side

Authors

  • Мохаммад Ракан Абед Алнаби Альджаафрех Kharkiv National University of Radio Electronics, Lenina 14, Kharkov, Ukraine, 61166, Ukraine https://orcid.org/0000-0002-8326-2764

DOI:

https://doi.org/10.15587/2312-8372.2014.25275

Keywords:

Lotka-Volterra model, stability problems, phase space

Abstract

The basic effects and patterns that characterize the model of coexistence of two species with weak sinusoidal external effect on the reproduction rate are considered. Solving Lotka-Volterra differential equations describes the ecosystem behavior. Numerical solutions for exposure frequencies, close to the frequency of an unperturbed system cycle are found. The stability of such a non-autonomous system is studied. It is determined that the periodic effect on the population, for example, by changing nutrition or hunting leads to a non-periodic system dynamics. Various forms of irregular behavior of “predators” and “victims” appear in the phase patterns for similar perturbations. All this confirms that even relatively simple models of ecosystems reveal their instability, i.e., sensitivity to small external perturbations.

The parameters of perturbations, leading in the proximity of resonant perturbation to both non-periodic growth of populations and non-periodic motions over a finite area, or to stabilization around zero, are defined. Herewith, extinction of populations is quite possible. The obtained results can be used by experts in the field of ecology and economy.

Author Biography

Мохаммад Ракан Абед Алнаби Альджаафрех, Kharkiv National University of Radio Electronics, Lenina 14, Kharkov, Ukraine, 61166

Graduate student

Department of Applied Mathematics

References

  1. Вольтерра, В. Математическая теория борьбы за существование [Текст]/ В. Вольтерра. – М.-Ижевск: Институт компьютерных исследований, 2004. – 288 с.
  2. Jost, C. The wolves of Isle Royale display scale-invariant satiation and density dependent predation on moose [Теxt]/ С. Jost, G. Devulder, J. A. Vucetich, R. Peterson, R. Arditi // J. Anim. Ecol. – 2005. – № 74(5). – P. 809–816.
  3. Мартынюк, А. А. Хаотическая потеря предельного цикла в задаче Вольтерра [Текст]/ А. А. Мартынюк, Н. В. Никитина// Докл. АН Украины. – 1996. – № 4. – С. 1–7.
  4. Hayashi, С. Bifurcations and the Generation of Chaotic States in the Solutions of Nonlinear Differential Еquations [Теxt]/ С. Hayashi, H. Kawakami// Теорегическая и прикладная механика. – 4-й Нац. конгр.; Варна, 1981. Докл. Кн. 1. – София, 1981 – С. 537–542.
  5. Hoppensteadt, F. Predator-prey model [Теxt] / F. Hoppensteadt // Scholarpedia. – 2006. – № 1 (10). – Р. 1563.
  6. Brauer, F. Mathematical Models in Population Biology and Epidemiology [Теxt]/ F. Brauer, C. Castillo-Chavez. – Springer-Verlag, 2000. – 201 p.
  7. Сорокин, П. А. Моделирование биологических популяций с использованием комплексных моделей, включающих в себя индивидуум-ориентированные и аналитические компоненты [Текст]: дис. ... канд. физ.-мат. наук/ П. А. Сорокин. – Долгопрудный, 2004.– 153 c.
  8. Arditi, R. How Species Interact: Altering the Standard View on Trophic Ecology [Теxt]/ R. Arditi, L. R. Ginzburg. – Oxford University Press, 2012. – 112 р.
  9. Гусятников, П. П. Качественные и численные методы в задачах оптимального управления в моделях хищник-жертва и популяции леммингов [Текст]: дис. ... канд. физ.-мат. наук/ П. П. Гусятников. – Москва, 2006. – 101 с.
  10. Nasritdinov, G. Limit cycle, trophic function and the dynamics of intersectoral interaction [Теxt]/ G. Nasritdinov, R. T. Dalimov// Current Research J. of Economic Theory. – 2010. – № 2 (2). – С. 32–40.
  11. Эрроусмит, Д. К. Обыкновенные дифференциальные уравнения. Качественная теория с приложениями [Текст]/ Д. К. Эрроусмит, К. М. Плейнс. – М.: Мир, 1986. – 243 с.
  12. Арнольд, В. И. Дополнительные главы теории обыкновенных дифференциальных уравнений [Текст] / В. И. Арнольд. – М.: Наука, 1987. – 304 с.
  13. Альджаафрех, М. Р. Неустойчивость динамического балланса в системах Лотки-Вольтерра с возмущением правой части [Текст]/ М. Р. Альджаафрех // Восточно-Европейский журнал передовых технологий. – 2014.– № 4/2(68). – С. 47–50.
  14. Vol'terra, V. (2004). Matematicheskaia teoriia bor'by za sushchestvovanie. M.-Izhevsk: Institut komp'iuternykh issledovanii, 288.
  15. Jost, С., Devulder, G., Vucetich, J. A., Peterson, R., Arditi, R. (2005). The wolves of Isle Royale display scale-invariant satiation and density dependent predation on moose. J. Anim. Ecol., № 74(5), 809–816.
  16. Martyniuk, A. A., Nikitina, N. V. (1996). Khaoticheskaia poteria predel'noho tsikla v zadache Vol'terra. Dokl. AN Ukrainy, № 4, 1–7.
  17. Hayashi, S., Kawakami, H. (1981). Bifurcations and the Generation of Chaotic States in the Solutions of Nonlinear Differential Equations. Teorehicheskaia i prikladnaia mekhanika. 4-i Nats. konhr.; Varna, 1981. Dokl. Kn. 1. Sofiia, 537–542.
  18. Hoppensteadt, F. (2006). Predator-prey model. Scholarpedia, № 1(10), 1563.
  19. Brauer, F., Castillo-Chavez, C. (2000). Mathematical Models in Population Biology and Epidemiology. Springer-Verlag, 201.
  20. Sorokin, P. A. (2004). Modelirovanie biolohicheskikh populiatsii s ispol'zovaniem kompleksnykh modelei, vkliuchaiushchikh v sebia individuum-orientirovannye i analiticheskie komponenty. Dolhoprudnyi, 153.
  21. Arditi, R., Ginzburg, L. R. (2012). How Species Interact: Altering the Standard View on Trophic Ecology. Oxford University Press, 112.
  22. Husiatnikov, P. P. (2006). Kachestvennye i chislennye metody v zadachakh optimal'noho upravleniia v modeliakh khishchnik-zhertva i populiatsii lemminhov. Moskva, 101.
  23. Nasritdinov, G., Dalimov, R. T. (2010). Limit cycle, trophic function and the dynamics of intersectoral interaction. Current Research J. of Economic Theory, №2(2), 32–40.
  24. Errousmit, D. K., Pleins, K. M. (1986). Obyknovennye differentsial'nye uravneniia. Kachestvennaia teoriia s prilozheniiami. M.: Mir, 243.
  25. Arnol'd, V. I. (1987). Dopolnitel'nye hlavy teorii obyknovennykh differentsial'nykh uravnenii. M.: Nauka, 304.
  26. Alja'afreh, M. R. (2014). Instability in dynamic balance of volterra-lotka systems with perturbations in the right side. Eastern-European Journal Of Enterprise Technologies, 2(4(68)), 47-50.

Published

2014-05-29

How to Cite

Альджаафрех, М. Р. А. А. (2014). Numerical research of stability in Lotka-Volterra systems with perturbed right side. Technology Audit and Production Reserves, 3(1(17), 20–22. https://doi.org/10.15587/2312-8372.2014.25275

Issue

Section

Technology audit