Development of schemes of pump and gasoline-pump absorption water-ammonia refrigeration machines to work in a system of water production from the air

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.44139

Keywords:

water-ammonia absorption refrigeration machine, water from the air, solar panels, technique for calculation of the thermodynamic cycles

Abstract

Perspectives of use of different types of refrigeration units for operation in systems for receiving water from the air in the absence of electrical power sources are analyzed. Such situation with a deficit of water and electric energy is typical for countries in Africa, Southeast Asia, South America. Prospects for use heat absorption water-ammonia refrigeration machines in such systems are analyzed. Solar collector with water as coolant is considered as heat source for the absorption refrigerating units. It is developed an original technique of calculation of the thermodynamic parameters of water-ammonia absorption cycle of refrigeration units, which allows you to determine the energy-efficient modes of operation and the relationship between the temperature of the object cooling, outside air and a source of thermal energy. Modes with maximum energy efficiency in the practical temperature range of the cooling medium (from 20 to 45 °C) and cooling facilities (from -30 to 15 °C) are shown during traditional AWARM cycle, and to achieve such optimum modes it is necessary the combination of the strong WA and temperature of the heating source. It is proposed the AWARM scheme with biasing booster compressor and scheme of pumpless AWARM. Researches are useful for developers of systems of receiving water from the air, particularly in tropical climates and in the absence of electrical power sources, as well as for developers of air conditioning systems. Developed water-ammonia systems at low outdoor temperature (in spring and autumn) can be used as a cooler of food and raw materials.

Author Biographies

Евгений Александрович Осадчук, Odessa National Academy of Food Technologies, Kanatnaya, 112, Odessa, 65039

Senior Lecturer

Department of Higher Mathematics

Александр Сергеевич Титлов, Odessa National Academy of Food Technologies, Kanatnaya, 112, Odessa, 65039

Doctor of Technical Sciences, Professor, Head Department

Department of Heat-and-Power Engineering and Oil-and-Gas Transportation and Storing

Виктор Михайлович Кузаконь, Odessa National Academy of Food Technologies, Kanatnaya, 112, Odessa, 65039

Candidate of Physical and Mathematical Sciences, Associate Professor, Head of Department

Department of Higher Mathematics

Галина Всеволодовна Шлапак, Odessa National Academy of Food Technologies, Kanatnaya, 112, Odessa, 65039

Candidate of Technical Sciences, Associate Professor

Department of Technology of Meat, Fish and Seafood

References

  1. Mehanizm «OON – vodnye resursy». Mezhdunarodnoe desiatiletie deistvii «Voda dlia zhizni», 2005-2015 gody. Available: http://www.un.org/ru/waterforlifedecade/unwater.shtml
  2. Al' Maitami Valid Abdulvahid Mohammed, Frumin, G. T. (2007). Napravleniia sovershenstvovaniia vodoobespecheniia v stranah araviiskogo poluostrova. Modern Problems of Science and Education, 6 (2), 13–17. doi:10.17513/spno.2007.6.2
  3. Al' Maitami Valid Abdulvahid Mohammed, Frumin, G. T. (2008). Ekologicheski bezopasnye tehnologii vodoobespecheniia v stranah araviiskogo poluostrova. Modern Problems of Science and Education, 3, 111–115. doi:10.17513/spno.2008.3
  4. Titlov, A. S., Krasnopol'skii, A. N. (2011). Analiz shem polucheniia vody iz atmosfernogo vozduha. Miasnoe delo, 6, 28.
  5. Ishchenko, I. N., Titlov, A. S., Krasnopol'skii, A. N. (2011). Perspektivy primeneniia absorbtsionnyh vodoammiachnyh holodil'nyh mashin v sistemah polucheniia vody iz atmosfernogo vozduha. Zbirnyk naukovykh prats Vinnytskoho natsionalnoho ahrarnoho universytetu. Seriia: Tekhnichni nauky, 7, 92–97.
  6. Shelepov, V. A., Melkozerov, M. G. (2012). Poluchenie vody iz atmosfernogo vozduha pri pomoshchi razlichnyh holodil'nyh mashin. Aktual'nye problemy aviatsii i kosmonavtiki, 8, 74-75.
  7. Vasyliv, O. B., Kovalenko, O. O. (2009). Struktura ta shliakhy ratsionalnoho vykorystannia vody na kharchovykh pidpryiemstvakh. Naukovi pratsi ONAKhT, 35 (1), 54-58.
  8. The European Solar Thermal Industry Federation (ESTIF). Available: http://www.estif.org
  9. Thermal solar line. Rotartica, air conditioning appliances: - Solar Line, single effect 4,5 kW. Available: http://andyschroder.com/static/pdf/Rotartica/Rotartica_Product_Description.pdf
  10. SorTech. Innovative Cooling! Available: http://www.sortech.de/en/trade/solare-kuehlung
  11. Henning, H.-M., Braun, R., Lokurlu, A., Noeres, P. (2005) .Solare Kuhlung und Klimatisierung-Beluftung und Warmeruckgewinnung. Solare Kuhlung und Klimatisierung. Themen, 45–54. Available: http://www.fvee.de/fileadmin/publikationen/Themenhefte/th2005/th2005_02_04.pdf
  12. SOLID. Solar Cooling. Available: http://www.solid.at/en/references/solar-cooling
  13. Doroshenko, А. V., Goncharenko, V. А. (2015). Engineering development of multifunctional solar systems based on the heat-absorption cycle and heat and mass transfer devices with a mobile nozzle. Refrigeration engineering and technology, Vol. 51, № 1, 35-46. doi:10.15673/0453-8307.1/2015.36783
  14. SolarFrost. Icebook. Available: http://www.solarfrost.com/en/icebook.html
  15. Jakob, U., Schneider, D., Eicker, U. (2005). Raumklimatisierung mittels solar betriebener Diffusion-Absorptionskaltemaschine. Horizonte, 26, 10-14.
  16. Tataurov, O. (2009). Holod – Solntse. Dlia izobretatelei i inzhenerov holodil'naia tehnika na al'ternativnyh istochnikah energii – bogateishee pole dlia tvorchestva. Holodil'nyi biznes, 7, 18-20.
  17. Zohar, A., Jelinek, M., Levy, A., Borde, I. (2007, September). The influence of diffusion absorption refrigeration cycle configuration on the performance. Applied Thermal Engineering, Vol. 27, № 13, 2213–2219. doi:10.1016/j.applthermaleng.2005.07.025
  18. Sözen, A., Menlik, T., Özbaş, E. (2012, February). The effect of ejector on the performance of diffusion absorption refrigeration systems: An experimental study. Applied Thermal Engineering, 33-34, 44–53. doi:10.1016/j.applthermaleng.2011.09.009
  19. Osadchuk, E. A., Titlov, A. S. (2012). Poisk energeticheski effektivnyh teplovyh rezhimov vodoammiachnoi absorbtsionnoi holodil'noi mashiny v shirokom diapazone ekspluatatsionnyh parametrov. Journal of Food Science and Technology, 4, 79-82.
  20. Titlov, A. S. (2006). Nauchno-tehnicheskie osnovy energosberezheniia pri proektirovanii holodil'nyh apparatov s absorbtsionno-diffuzionnymi holodil'nymi mashinami. Naukovi pratsi Odeskoi natsionalnoi akademii kharchovykh tekhnolohii, 29 (1), 194-200.
  21. Baranenko, A. V., Belozerov, G. A., Tagantsev, O. M., Smyslov, V. I., Bondarev, V. N. (2009). Sostoianie i perspektivy razvitiia holodil'noi otrasli v Rossii. Holodil'naia tehnika, 3, 20-24.
  22. Morosuk, L. I. (2014). Development and improvement of the heat using refrigerating machines. Refrigeration engineering and technology, 5, 23-29. doi:10.15673/0453-8307.5/2014.28695
  23. Sathyabhama, A., Ashok, B. (2008). Thermodynamic simulation of ammonia-water absorption refrigeration system. Thermal Science, Vol. 12, № 3, 45–53. doi:10.2298/tsci0803045s
  24. Osadchuk, E. A., Titlov, A. S., Mazurenko, S. Yu. (2014). Determination of power efficient operating conditions of absorption water-ammonia refrigerating machine in the systems for obtaining water from atmospheric air. Refrigeration engineering and technology, 4, 54–57. doi:10.15673/0453-8307.4/2014.28054
  25. Radchenko, N. I., Konovalov, D. V. (2008). Holodil'nye teploispol'zuiushchie tsikly s primenenie effekta teplovoi kompressii. Aviatsionno-kosmicheskaia tehnika i tehnologiia, 8 (55), 111-115.
  26. Ishchenko, I. N. (2010). Modelirovanie tsiklov nasosnyh i beznasosnyh absorbtsionnyh holodil'nyh agregatov. Naukovi pratsi Odeskoi natsionalnoi akademii kharchovykh tekhnolohii, 38 (2), 393–405.

Published

2015-05-28

How to Cite

Осадчук, Е. А., Титлов, А. С., Кузаконь, В. М., & Шлапак, Г. В. (2015). Development of schemes of pump and gasoline-pump absorption water-ammonia refrigeration machines to work in a system of water production from the air. Technology Audit and Production Reserves, 3(3(23), 30–37. https://doi.org/10.15587/2312-8372.2015.44139

Issue

Section

Technologies of food and light industry