Using photonic-crystal fibers in telecommunication systems

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.71950

Keywords:

dispersion, distribution, photonic crystal fibers, telecommunication systems

Abstract

This paper describes the advantages of using photonic crystal fibers in telecommunication systems. The relevance of the study is related to the fact that a large number of applications, such as the event in miniature sources of light of several wavelengths of new generation, based on the addition of the active functionality, ultra-sensitive sensors, optical memory functions, require a high quality factor and single-photon sources of light. Photonic crystals are expected to be used in novel optical devices such as non-threshold laser diodes, LEDs single mode, waveguides with small losses low, sharp bends, small prisms and optical integrated circuit. They can even operate as a «left-handed materials», which are able to focus the waves transmitted in the sub-wavelength place due to the negative refraction. Photonic crystals could solve many of the problems that currently limit the speed and capacity of optical communication networks. For example, photonic crystals may be used to create new LEDs and lasers, which emit light in a very narrow wavelength range, as well as optical filters with high selectivity, which can be integrated on a single chip.

Author Biography

Али Абдурахман, Kharkiv National University of Radio Electronics, Ukraine, Kharkiv, Nauka Ave, 14, 61166

Department of Telecommunication Systems and Networks

References

  1. DiGiovanni, D. J., Das, S. K., Blyler, L. L., White, W., Boncek, R. K., Golowich, S. E. (2002). Design of Optical Fibers for Communications Systems. Optical Fiber Telecommunications IV-A. Elsevier BV, 17–79. doi:10.1016/b978-012395172-4/50002-4
  2. Broderick, N. G. R., Monro, T. M., Bennett, P. J., Richardson, D. J. (1999, October 15). Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters, Vol. 24, № 20, 1395–1397. doi:10.1364/ol.24.001395
  3. Bong-Shik, S., Asano, T., Akahane, Y., Tanaka, Y., Noda, S. (2005, March). Multichannel add/drop filter based on in-plane hetero photonic Crystals. Journal of Lightwave Technology, Vol. 23, № 3, 1449–1455. doi:10.1109/jlt.2004.841458
  4. Chow, K. K., Shu, C., Chinlon, L., Bjarklev, A. (2005, March). Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber. IEEE Photonics Technology Letters, Vol. 17, № 3, 624–626. doi:10.1109/lpt.2004.840929
  5. Niemi, T., Frandsen, L. H., Hede, K. K., Harpoth, A., Borel, P. I., Kristensen, M. (2006, January). Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photonics Technology Letters, Vol. 18, № 1, 226–228. doi:10.1109/lpt.2005.860001
  6. Kurokawa, K., Tajima, K., Tsujikawa, K., Nakajima, K., Matsui, T., Sankawa, I., Haibara, T. (2006, January). Penalty-free dispersion-managed soliton transmission over a 100-km low-loss PCF. Journal of Lightwave Technology, Vol. 24, № 1, 32–37. doi:10.1109/jlt.2005.861146
  7. Jupnik, H. (1968, January 12). Fiber Optics. Principles and Applications. N. S. Kapany. Academic Press, New York, 1967. 447 pp., illus. $17.50. Science, Vol. 159, № 3811, 183–183. doi:10.1126/science.159.3811.183
  8. Kapron, F. P. (1970). Radiation Losses in Glass Optical Waveguides. Applied Physics Letters, Vol. 17, № 10, 423. doi:10.1063/1.1653255
  9. Miya, T., Terunuma, Y., Hosaka, T., Miyashita, T. (1979). Ultimate low-loss single-mode fibre at 1.55 μm. Electronics Letters, Vol. 15, № 4, 106. doi:10.1049/el:19790077
  10. Roberts, G. C. K. (1981, February 9). NMR Spectroscopy: An Introduction. FEBS Letters, Vol. 124, № 1, 130–130. doi:10.1016/0014-5793(81)80074-9
  11. Russell, P. (2003, January 17). Photonic Crystal Fibers. Science, Vol. 299, № 5605, 358–362. doi:10.1126/science.1079280
  12. Knight, J. C. (1998, November 20). Photonic Band Gap Guidance in Optical Fibers. Science, Vol. 282, № 5393, 1476–1478. doi:10.1126/science.282.5393.1476
  13. Kaminow, I., Li, T., Willner, A. (2006). Guest Editorial—Special 40th Anniversary Issue on Optoelectronics. Journal of Lightwave Technology, Vol. 24. № 12, 4428–4432. doi:10.1109/jlt.2006.886406
  14. Cregan, R. F. (1999, September 3). Single-Mode Photonic Band Gap Guidance of Light in Air. Science, Vol. 285, № 5433, 1537–1539. doi:10.1126/science.285.5433.1537
  15. Marcuse, D., Miller, S. E. (1964, July). Analysis of a Tubular Gas Lens. Bell System Technical Journal, Vol. 43, № 4, 1759–1782. doi:10.1002/j.1538-7305.1964.tb04107.x
  16. Zheltikov, A. M. (2004, January 31). Nonlinear optics of microstructure fibers. Physics-Uspekhi, Vol. 47, № 1, 69–98. doi:10.1070/pu2004v047n01abeh001731
  17. Knight, J. C., Birks, T. A., Russell, P. S. J., Atkin, D. M. (1996, October 1). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, Vol. 21, № 19, 1547–1549. doi:10.1364/ol.21.001547
  18. Tajima, K., Nakajima, K., Kurokawa, K., Yoshizawa, N., Ohashi, M. (2002). Low-loss photonic crystal fibers. Optical Fiber Communication Conference and Exhibit. Institute of Electrical & Electronics Engineers (IEEE), 523–524. doi:10.1109/ofc.2002.1036529
  19. Tajima, K., Zhou, J., Kurokawa, K., Nakajima, K. (2003). Low water peak photonic crystal fibers. 29th European Conference on Optical Communication ECOC'03. Rimini, Italy, 42–43.
  20. Smith, C. M., Venkataraman, N., Gallagher, M. T., Müller, D. et al. (2003, August 7). Low-loss hollow-core silica/air photonic bandgap fibre. Nature, Vol. 424, № 6949, 657–659. doi:10.1038/nature01849
  21. Kumar, V. V. R., George, A., Reeves, W., Knight, J., Russell, P., Omenetto, F., Taylor, A. (2002, December 16). Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, Vol. 10, № 25, 1520. doi:10.1364/oe.10.001520
  22. Cregan, R. F. (1999, September 3). Single-Mode Photonic Band Gap Guidance of Light in Air. Science, Vol. 285, № 5433, 1537–1539. doi:10.1126/science.285.5433.1537
  23. Payne, F. P., Lacey, J. P. R. (1994, October). A theoretical analysis of scattering loss from planar optical waveguides. Optical and Quantum Electronics, Vol. 26, № 10, 977–986. doi:10.1007/bf00708339
  24. Bjarklev, A., Broeng, J., Bjarklev, A. S. (2003). Photonic Crystal Fibres. Springer Science & Business Media, 298. doi:10.1007/978-1-4615-0475-7
  25. Knight, J. C., Birks, T. A., Russell, P. S. J., de Sandro, J. P. (1998, March 1). Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America A, Vol. 15, № 3, 748–752. doi:10.1364/josaa.15.000748
  26. Birks, T. A., Knight, J. C., Russell, P. S. J. (1997, July 1). Endlessly single-mode photonic crystal fiber. Optics Letters, Vol. 22, № 13, 961–963. doi:10.1364/ol.22.000961
  27. Gfeller, F. R., Bapst, U. (1979). Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE, Vol. 67, № 11, 1474–1486. doi:10.1109/proc.1979.11508

Published

2016-05-26

How to Cite

Абдурахман, А. (2016). Using photonic-crystal fibers in telecommunication systems. Technology Audit and Production Reserves, 3(2(29), 62–67. https://doi.org/10.15587/2312-8372.2016.71950