Using photonic-crystal fibers in telecommunication systems
DOI:
https://doi.org/10.15587/2312-8372.2016.71950Keywords:
dispersion, distribution, photonic crystal fibers, telecommunication systemsAbstract
This paper describes the advantages of using photonic crystal fibers in telecommunication systems. The relevance of the study is related to the fact that a large number of applications, such as the event in miniature sources of light of several wavelengths of new generation, based on the addition of the active functionality, ultra-sensitive sensors, optical memory functions, require a high quality factor and single-photon sources of light. Photonic crystals are expected to be used in novel optical devices such as non-threshold laser diodes, LEDs single mode, waveguides with small losses low, sharp bends, small prisms and optical integrated circuit. They can even operate as a «left-handed materials», which are able to focus the waves transmitted in the sub-wavelength place due to the negative refraction. Photonic crystals could solve many of the problems that currently limit the speed and capacity of optical communication networks. For example, photonic crystals may be used to create new LEDs and lasers, which emit light in a very narrow wavelength range, as well as optical filters with high selectivity, which can be integrated on a single chip.
References
- DiGiovanni, D. J., Das, S. K., Blyler, L. L., White, W., Boncek, R. K., Golowich, S. E. (2002). Design of Optical Fibers for Communications Systems. Optical Fiber Telecommunications IV-A. Elsevier BV, 17–79. doi:10.1016/b978-012395172-4/50002-4
- Broderick, N. G. R., Monro, T. M., Bennett, P. J., Richardson, D. J. (1999, October 15). Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters, Vol. 24, № 20, 1395–1397. doi:10.1364/ol.24.001395
- Bong-Shik, S., Asano, T., Akahane, Y., Tanaka, Y., Noda, S. (2005, March). Multichannel add/drop filter based on in-plane hetero photonic Crystals. Journal of Lightwave Technology, Vol. 23, № 3, 1449–1455. doi:10.1109/jlt.2004.841458
- Chow, K. K., Shu, C., Chinlon, L., Bjarklev, A. (2005, March). Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber. IEEE Photonics Technology Letters, Vol. 17, № 3, 624–626. doi:10.1109/lpt.2004.840929
- Niemi, T., Frandsen, L. H., Hede, K. K., Harpoth, A., Borel, P. I., Kristensen, M. (2006, January). Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photonics Technology Letters, Vol. 18, № 1, 226–228. doi:10.1109/lpt.2005.860001
- Kurokawa, K., Tajima, K., Tsujikawa, K., Nakajima, K., Matsui, T., Sankawa, I., Haibara, T. (2006, January). Penalty-free dispersion-managed soliton transmission over a 100-km low-loss PCF. Journal of Lightwave Technology, Vol. 24, № 1, 32–37. doi:10.1109/jlt.2005.861146
- Jupnik, H. (1968, January 12). Fiber Optics. Principles and Applications. N. S. Kapany. Academic Press, New York, 1967. 447 pp., illus. $17.50. Science, Vol. 159, № 3811, 183–183. doi:10.1126/science.159.3811.183
- Kapron, F. P. (1970). Radiation Losses in Glass Optical Waveguides. Applied Physics Letters, Vol. 17, № 10, 423. doi:10.1063/1.1653255
- Miya, T., Terunuma, Y., Hosaka, T., Miyashita, T. (1979). Ultimate low-loss single-mode fibre at 1.55 μm. Electronics Letters, Vol. 15, № 4, 106. doi:10.1049/el:19790077
- Roberts, G. C. K. (1981, February 9). NMR Spectroscopy: An Introduction. FEBS Letters, Vol. 124, № 1, 130–130. doi:10.1016/0014-5793(81)80074-9
- Russell, P. (2003, January 17). Photonic Crystal Fibers. Science, Vol. 299, № 5605, 358–362. doi:10.1126/science.1079280
- Knight, J. C. (1998, November 20). Photonic Band Gap Guidance in Optical Fibers. Science, Vol. 282, № 5393, 1476–1478. doi:10.1126/science.282.5393.1476
- Kaminow, I., Li, T., Willner, A. (2006). Guest Editorial—Special 40th Anniversary Issue on Optoelectronics. Journal of Lightwave Technology, Vol. 24. № 12, 4428–4432. doi:10.1109/jlt.2006.886406
- Cregan, R. F. (1999, September 3). Single-Mode Photonic Band Gap Guidance of Light in Air. Science, Vol. 285, № 5433, 1537–1539. doi:10.1126/science.285.5433.1537
- Marcuse, D., Miller, S. E. (1964, July). Analysis of a Tubular Gas Lens. Bell System Technical Journal, Vol. 43, № 4, 1759–1782. doi:10.1002/j.1538-7305.1964.tb04107.x
- Zheltikov, A. M. (2004, January 31). Nonlinear optics of microstructure fibers. Physics-Uspekhi, Vol. 47, № 1, 69–98. doi:10.1070/pu2004v047n01abeh001731
- Knight, J. C., Birks, T. A., Russell, P. S. J., Atkin, D. M. (1996, October 1). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, Vol. 21, № 19, 1547–1549. doi:10.1364/ol.21.001547
- Tajima, K., Nakajima, K., Kurokawa, K., Yoshizawa, N., Ohashi, M. (2002). Low-loss photonic crystal fibers. Optical Fiber Communication Conference and Exhibit. Institute of Electrical & Electronics Engineers (IEEE), 523–524. doi:10.1109/ofc.2002.1036529
- Tajima, K., Zhou, J., Kurokawa, K., Nakajima, K. (2003). Low water peak photonic crystal fibers. 29th European Conference on Optical Communication ECOC'03. Rimini, Italy, 42–43.
- Smith, C. M., Venkataraman, N., Gallagher, M. T., Müller, D. et al. (2003, August 7). Low-loss hollow-core silica/air photonic bandgap fibre. Nature, Vol. 424, № 6949, 657–659. doi:10.1038/nature01849
- Kumar, V. V. R., George, A., Reeves, W., Knight, J., Russell, P., Omenetto, F., Taylor, A. (2002, December 16). Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, Vol. 10, № 25, 1520. doi:10.1364/oe.10.001520
- Cregan, R. F. (1999, September 3). Single-Mode Photonic Band Gap Guidance of Light in Air. Science, Vol. 285, № 5433, 1537–1539. doi:10.1126/science.285.5433.1537
- Payne, F. P., Lacey, J. P. R. (1994, October). A theoretical analysis of scattering loss from planar optical waveguides. Optical and Quantum Electronics, Vol. 26, № 10, 977–986. doi:10.1007/bf00708339
- Bjarklev, A., Broeng, J., Bjarklev, A. S. (2003). Photonic Crystal Fibres. Springer Science & Business Media, 298. doi:10.1007/978-1-4615-0475-7
- Knight, J. C., Birks, T. A., Russell, P. S. J., de Sandro, J. P. (1998, March 1). Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America A, Vol. 15, № 3, 748–752. doi:10.1364/josaa.15.000748
- Birks, T. A., Knight, J. C., Russell, P. S. J. (1997, July 1). Endlessly single-mode photonic crystal fiber. Optics Letters, Vol. 22, № 13, 961–963. doi:10.1364/ol.22.000961
- Gfeller, F. R., Bapst, U. (1979). Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE, Vol. 67, № 11, 1474–1486. doi:10.1109/proc.1979.11508
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Али Абдурахман
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.