Research of elastic-plastic deformation of the finned objects of finite size

Authors

  • Наталья Дмитриевна Сизова Kharkiv National University of Construction and Architecture, Str. Sumskaya, 40, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-0103-1939

DOI:

https://doi.org/10.15587/2312-8372.2016.74580

Keywords:

elastic-plastic deformation, nonlinear equations, linearization, R-function, structural model, computational experiment

Abstract

Finned conical and cylindrical bodies of finite size are used in many industrial processes such as the manufacture of pipes for various purposes, chambers of detonation presses et al., which are essential elements supported by different numbers of ribs with optimal geometrical parameters. This structure is subjected to stresses that lead to the appearance of elastic-plastic deformation, but it does not destroy it.

To study the problem of determining the stress-strain state of finned cylindrical and conical bodies of finite size an approach based on the theory of small elastic-plastic deformations is proposed. The system of nonlinear equations is linearized using the method of variable elasticity parameters.

Approximate solution of the linearized elastic problem on each the k-th iteration is constructed with use of the theory of R-functions into a single analytic expression.

The solution of problems in this case allows to explore a wide class of technological elements without restrictions on the area form and loading types, find the allowable load value, which does not exceed the liquid limit, but greater than the elastic boundaries. Determination of the allowable load holds a saving of material resources and optimizes the geometric parameters of the design elements and predicts the optimal mode of operation of the assembly. Furthermore, it is possible to set the strength of the loaded structures, which are designed for continuous operation under load.

Author Biography

Наталья Дмитриевна Сизова, Kharkiv National University of Construction and Architecture, Str. Sumskaya, 40, Kharkov, Ukraine, 61002

Doctor of Physical and Mathematical Sciences, Professor

Department of Economic Cybernetics and Information Technologies

References

  1. Gladman, B. (2007). LS-DYNA User’s Manual. Vol. 1. Version 971. Livermore (California): LSTC, 2206.
  2. Sultanov, L., Davydov, R. (2015, January). The Algorithm of Solving the Problem of Large Elastic-Plastic Deformation by FEM. Applied Mechanics and Materials, Vol. 725-726, 875–880. doi:10.4028/www.scientific.net/amm.725-726.875
  3. Zenkevich, O. (1975). Metod konechnyh elementov v tehnike. Moscow: Mir, 349.
  4. In: Saharov, A. S., Altenbah, I. (1982). Metod konechnyh elementov v mehanike tverdyh tel. Kyiv: Visha shchkola; Leipzig: Feb Fahbuhferlag, 420.
  5. Rvachev, V. L. (1982). Teoriia R-funktsii i nekotorye ee prilozheniia. Kyiv: Naukova dumka, 552.
  6. Rvachev, V. L., Sheiko, T. I. (1995). R-Functions in Boundary Value Problems in Mechanics. Applied Mechanics Reviews, Vol. 48, № 4, 151–188. doi:10.1115/1.3005099
  7. Rvachev, V. L., Sheiko, T. I., Shapiro, V., Tsukanov, I. (2000, March 23). On completeness of RFM solution structures. Computational Mechanics, Vol. 25, № 2-3, 305–317. doi:10.1007/s004660050479
  8. Rvachev, V. L., Sinekop, N. S. (1990). Metod R-funktsii v sadachah teorii uprugosti i plastichnosti. Kyiv: Naukova dumka, 216.
  9. Sizova, N. D., Basarab, M. A. (1999). A Combined Use of the Finite Difference Method and Method of Integral Transformations for Solution of a Parabolic Multidimensional Initial Boundary – Value Problem. Reports of the National Academy of Sciences of Ukraine, 4, 11–15.
  10. Rvachev, V. L., Shchevchenko, A. N. (1988). Programmno-orientirovannye iasyki i sistemy dlia inzhenernyh raschetov. Kyiv: Tekhnika, 197.
  11. Benisa, M., Babic, B., Grbovic, A., Stefanovic, Z. (2012). Computer – aided modeling of the rubber-pad forming process. Materials and Technology, Vol. 46, № 5, 503–510.
  12. Sherief, H. H., Anwar, M. N. (1992, October). Generalized thermoelasticity problem for a plate subjected to moving heat sources on both sides. Journal of Thermal Stresses, Vol. 15, № 4, 489–505. doi:10.1080/01495739208946152
  13. Kozin, O., Papkovskaya, O. (2016, April 27). Analysis of stress-strain state of the spherical shallow shell with inclusion. Odes’kyi Politechnichnyi Universytet. Pratsi, 1 (48), 30–40. doi:10.15276/opu.1.48.2016.05
  14. Bogoiavlenskii, K. N., Sorokov, E. I. (1975). Shchtampovka polyh detalei elastichnoi zhidkost'iu. Isgotovlenie detalei plasticheskim deformirovaniem. Leningrad: Mashchinostroenie, 332–354.
  15. Sizova, N. (2016). Evaluation of stress-strain state of stiffened cylindrical and conical elements. ScienceRise, 6(2 (23)), 58–65. doi:10.15587/2313-8416.2016.72566
  16. Hardt, R., Kinderlehrer, D. (1983, June). Elastic plastic deformation. Applied Mathematics & Optimization, Vol. 10, № 1, 203–246. doi:10.1007/bf01448387
  17. Markus, P., Biermann, G. (1989). Grundlehrer zu tehrmoelasnischen Spanungsanalisen. VDI – Forschungsh, 651, 1–52.
  18. Jankowska, M. A., Kolodziej, J. A. (2015, August). On the application of the method of fundamental solutions for the study of the stress state of a plate subjected to elastic–plastic deformation. International Journal of Solids and Structures, Vol. 67-68, 139–150. doi:10.1016/j.ijsolstr.2015.04.015
  19. Pisarenko, G. S., Mozharovskii, N. S. (1981). Uravneniia i kraevye sadachi teorii plastichnosti i polsuchesti. Kyiv: Naukova dumka, 495.
  20. Iliushchin, A. A., Ogibalov, P. M. (1960). Uprugoplasticheskie deformatsii polyh tsilindrov. Moscow: University of Moscow, 277.
  21. Kalitkin, N. N. (2011). Chislennye metody. St. Petersburg: BVH-Peterburg, 586.

Published

2016-07-26

How to Cite

Сизова, Н. Д. (2016). Research of elastic-plastic deformation of the finned objects of finite size. Technology Audit and Production Reserves, 4(2(30), 53–59. https://doi.org/10.15587/2312-8372.2016.74580

Issue

Section

Mathematical Modeling: Original Research