DOI: https://doi.org/10.15587/2312-8372.2016.80596

Developing of adaptive model predictive control system for heat treatment of iron-ore pellets with using recursive least square algorithm for online parameter estimation

Sergij Ruban, Vadim Kharlamenko, Sergij Tsvirkun

Abstract


The article discusses the problems of development of the system of adaptive predictive control of pellets heat treatment with online estimation of parameters of the process model. Due to nonstationarity in time of the process parameters caused by fluctuations of particle size distribution and fractional void of the layer, changes in the process equipment characteristics and the presence of noise in measurement channels, the existing automation systems of pellets heat treatment do not always allow to solve the problem of stabilization temperature profile in the pellets layer, as well as reduce the specific consumption of energy. To overcome these disadvantages the recursive least squares algorithm is proposed to use for estimating the parameters of process model which subsequently is the base for calculating the manipulated variable (the gas flow to the burner of the leading side of the indurating machine) with using the methods of Model Predictive Control theory that provides maintenance of a preset temperature regime of pellets indurating under conditions of uncontrolled disturbances. In accordance with the described approach it is suggested the variant of the structure of the system of adaptive predictive control of the temperature regime of pellets indurating in the separate gas-air chamber of indurating machine, and the simulation of this system was performed in Simulink package with the use of real data about the dependence of temperature in the heart of firing zone from gas consumption on the burner of leading side, which were obtained in a mode of passive experiment at the indurating machine OK-324 of JSC «Central GOK (ME)». The resulting system has demonstrated the high quality of the online estimation of parameters and sufficient convergence rate for conditions of pellets heat treatment. The obtained results allow us to recommend the developed method of formation of adaptive predictive control for automation of pellets heat treatment.


Keywords


adaptive model predictive control; heat treatment of iron-ore pellets; online parameter estimation; recursive least square algorithm

Full Text:

PDF

References


Lobov, V. Y., Yefimenko, L. I., Tykhanskyi, M. P., Ruban, S. A. (2015). Avtomatyzovani systemy keruvannia protsesamy termichnoi obrobky kotuniv na konveiernii vypaliuvanii mashyni. Kryvyi Rih: Vydavets FOP Cherniavskyi D.O., 250.

Porkuian, O. V. (2009). Keruvannia neliniinymy dynamichnymy obiektamy zbahachuvalnykh vyrobnytstv na osnovi hibrydnykh modelei Hamershteina. Kryvyi Rih, 379.

Veremei, E. Y. (2014). Upravlenye s prohnozyruiushchymy modeliamy. St. Petersburg: SPbHU, 212.

Morari, M., Lee, J. H. (1999, May). Model predictive control: past, present and future. Computers & Chemical Engineering, Vol. 23, № 4-5, 667–682. doi:10.1016/s0098-1354(98)00301-9

Roubos, J. A., Mollov, S., Babuška, R., Verbruggen, H. B. (1999, September). Fuzzy model-based predictive control using Takagi-Sugeno models. International Journal of Approximate Reasoning, Vol. 22, № 1-2, 3–30. doi:10.1016/s0888-613x(99)00020-1

García, C. E., Prett, D. M., Morari, M. (1989, May). Model predictive control: Theory and practice – A survey. Automatica, Vol. 25, № 3, 335–348. doi:10.1016/0005-1098(89)90002-2

Lee, J. H., Morari, M., Garcia, C. E. (1994, April). State-space interpretation of model predictive control. Automatica, Vol. 30, № 4, 707–717. doi:10.1016/0005-1098(94)90159-7

Gomez, J. C., Jutan, A., Baeyens, E. (2004, May 1). Wiener model identification and predictive control of a pH neutralisation process. IEE Proceedings-Control Theory and Applications, Vol. 151, № 3, 329–338. doi:10.1049/ip-cta:20040438

Pottmann, M., Seborg, D. E. (1997, June). A nonlinear predictive control strategy based on radial basis function models. Computers & Chemical Engineering, Vol. 21, № 9, 965–980. doi:10.1016/s0098-1354(96)00340-7

Bukov, V. N. (1997). Adaptyvnye prohnozyruiushchye systemy upravlenyia poletom. Moscow: Nauka, 232.

Fruzzetti, K. P., Palazoğlu, A., McDonald, K. A. (1997, February). Nolinear model predictive control using Hammerstein models. Journal of Process Control, Vol. 7, № 1, 31–41. doi:10.1016/s0959-1524(97)80001-b

Ruban, S. A. (2011). Avtomatyzatsiia protsesu keruvannia termichnoiu obrobkoiu zalizorudnykh obkotyshiv z vykorystanniam prohnozuiuchykh ANFIS-modelei. Kryvyi Rih, 20.

Mykhailenko, O. (2015). Process control of ore crushing using block-oriented predictive model. Technology Audit And Production Reserves, 4(3(24)), 28–32. doi:10.15587/2312-8372.2015.47952

Patikirikorala, T., Wang, L., Colman, A., Han, J. (2012, January). Hammerstein–Wiener nonlinear model based predictive control for relative QoS performance and resource management of software systems. Control Engineering Practice, Vol. 20, № 1, 49–61. doi:10.1016/j.conengprac.2011.09.003

Liunh, L.; In: Tsypkin, Ya. Z. (1991). System Identification: Theory for the User. Moscow: Nauka, 432.

Candy, J. V. (2005). Model-Based Signal Processing. New Jersey: Wiley-IEEE Press, 704. doi:10.1002/0471732672


GOST Style Citations


Lobov, V. Y. Avtomatyzovani systemy keruvannia protsesamy termichnoi obrobky kotuniv na konveiernii vypaliuvanii mashyni [Text]: Monograph / V. Y. Lobov, L. I. Yefimenko, M. P. Tykhanskyi, S. A. Ruban. – Kryvyi Rih: Vydavets FOP Cherniavskyi D.O., 2015. – 250 p.

Porkuian, O. V. Keruvannia neliniinymy dynamichnymy obiektamy zbahachuvalnykh vyrobnytstv na osnovi hibrydnykh modelei Hamershteina [Text]: Dissertation of the Doctor of Technical Sciences / O. V. Porkuian. – Kryvyi Rih, 2009. – 379 p.

Veremei, E. Y. Upravlenye s prohnozyruiushchymy modeliamy [Text] / E. Y. Veremei. – SPb: SPbHU, 2014. – 212 p.

Morari, M. Model predictive control: past, present and future [Text] / M. Morari, J. H. Lee // Computers & Chemical Engineering. – 1999. – Vol. 23, № 4-5. – P. 667–682. doi:10.1016/s0098-1354(98)00301-9

Roubos, J. A. Fuzzy model-based predictive control using Takagi-Sugeno models [Text] / J. A. Roubos, S. Mollov, R. Babuška, H. B. Verbruggen // International Journal of Approximate Reasoning. – 1999. – Vol. 22, № 1-2. – P. 3–30. doi:10.1016/s0888-613x(99)00020-1

Garcia, C. E. Model predictive control: Theory and practice – A survey [Text] / C. E. Garcia, D. M. Prett, M. Morari // Automatica. – 1989. – Vol. 25, № 3. – P. 335–348. doi:10.1016/0005-1098(89)90002-2

Lee, J. H. State-space interpretation of model predictive control [Text] / J. H. Lee, M. Morari, C. E. Garcia // Automatica. – 1994. – Vol. 30, № 4. – P. 707–717. doi:10.1016/0005-1098(94)90159-7

Gomez, J. C. Wiener model identification and predictive control of a pH neutralisation process [Text] / J. C. Gomez, A. Jutan, E. Baeyens // IEE Proceedings-Control Theory and Applications. – 2004. – Vol. 151, № 3. – P. 329–338. doi:10.1049/ip-cta:20040438

Pottmann, M. A nonlinear predictive control strategy based on radial basis function models [Text] / M. Pottmann, D. E. Seborg // Computers & Chemical Engineering. – 1997. – Vol. 21, № 9. – P. 965–980. doi:10.1016/s0098-1354(96)00340-7

Bukov, V. N. Adaptyvnye prohnozyruiushchye systemy upravlenyia poletom [Text] / V. N. Bukov. – M.: Nauka, 1997. – 232 p.

Fruzzetti, K. P. Nolinear model predictive control using Hammerstein models [Text] / K. P. Fruzzetti, A. Palazoglu, K. A. McDonald // Journal of Process Control. – 1997. – Vol. 7, № 1. – P. 31–41. doi:10.1016/s0959-1524(97)80001-b

Ruban, S. A. Avtomatyzatsiia protsesu keruvannia termichnoiu obrobkoiu zalizorudnykh obkotyshiv z vykorystanniam prohnozuiuchykh ANFIS-modelei [Text]: PhD thesis / S. A. Ruban. – Kryvyi Rih, 2011. – 20 p.

Mykhailenko, O. Process control of ore crushing using block-oriented predictive model [Text] / O. Mykhailenko // Technology audit and production reserves. – 2015. – № 4/3 (24). – P. 28–32. doi:10.15587/2312-8372.2015.47952

Patikirikorala, T. Hammerstein–Wiener nonlinear model based predictive control for relative QoS performance and resource management of software systems [Text] / T. Patikirikorala, L. Wang, A. Colman, J. Han // Control Engineering Practice. – 2012. – Vol. 20, № 1. – P. 49–61. doi:10.1016/j.conengprac.2011.09.003

Ljung, L. System Identification: Theory for the User [Text] / L. Ljung; by ed. Ya. Z. Tsypkin. – М.: Nauka, 1991. – 432 p.

Candy, J. V. Model-Based Signal Processing [Text] / J. V. Candy. – New Jersey: Wiley-IEEE Press, 2005. – 704 p. doi:10.1002/0471732672







Copyright (c) 2016 Sergij Tsvirkun, Sergij Ruban, Vadim Kharlamenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 2664-9969, ISSN (on-line) 2706-5448