Strength analysis of lamellar graphite cast iron in the «carbon (C) – carbon equivalent (Ceq)» factor space in the range of C = (3,425-3,563) % and Ceq = (4,214-4,372) %

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.93178

Keywords:

lamellar graphite cast iron, induction crucible furnace, regression equation, canonical transformation of the response surface

Abstract

The object of research is the structural lamellar graphite cast iron, where the carbon equivalent (Ceq) is in the range of (4,214-4,372) % and the carbon content (C) is in the range of (3,425-3,563) %.

The aim of research is to describe the distribution of values of tensile strength of cast iron series in the factor space C–Ceq at a fixed level of Cr-Ni-Cu-Ti alloyed complex in narrow ranges.

To achieve this aim, there are the next objectives.

1. Build a workable analytical description of the impact of the selected input variables on the tensile strength of cast iron.

2. Study the response surface and identify the most informative point of the factor space for further detailed investigation of the microstructure in these points.

It is shown that polynomial regression equation provides forecast accuracy, exceeding the accuracy using a linear regression equation in 1,23 times. An existence of a saddle point is revealed on the basis of the canonical transformation of response surface. It is an informative indicator, which suggests that the respective values of the input variables C = 3,492 %, Ceq = 4,28 % when the content of alloying elements ,  form a microstructure that guarantees the value of cast iron tensile strength TS = 203 MPa. In view of the resulting confidence interval, this value with a probability of 95 % is in the range of TS = (193-213) MPa. Metallographic microstructure description in the saddle point is important and can be obtained by the development of modeling results.

It is noted that there is a fundamental opportunity to improve accuracy and obtaining more precise description of the response surface – due to numerical building of D-optimal plan or artificial orthogonalization of full factorial experiment, inside the considered in this work

Author Biography

Dmitriy Demin, National Technical University «Kharkіv Polytechnic Institute», Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Foundry Production

References

  1. Ivanova, L. A., Dotsenko, P. V., Prokopovich, I. V., Kasprevich, P. V. (1995). Povyshenie germetichnosti otlivok iz serogo chuguna. Puti povysheniia kachestva i ekonomichnosti liteinyh protsessov, 11–13.
  2. Ivanova, L. A., Prokopovich, I. V., Kasprevich, P. V. (1996). Prichiny poteri germetichnosti otlivok iz serogo chuguna. Modelirovanie v prikladnyh nauchnyh issledovaniiah, 25–28.
  3. Ivanova, L. A., Prokopovich, I. V. (1996). Zavisimost' germetichnosti serogo chuguna ot dliny grafitovyh vkliuchenii. Modelirovanie v prikladnyh nauchnyh issledovaniiah, 28–32
  4. Endo, M., Yanase, K. (2014). Effects of small defects, matrix structures and loading conditions on the fatigue strength of ductile cast irons. Theoretical and Applied Fracture Mechanics, 69, 34–43. doi:10.1016/j.tafmec.2013.12.005
  5. Cheng, Y., Huang, F., Li, W., Liu, R., Li, G., Wei, J. (2016). Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete. Construction and Building Materials, 118, 164–170. doi:10.1016/j.conbuildmat.2016.05.020
  6. Borsato, T., Berto, F., Ferro, P., Carollo, C. (2016). Effect of in-mould inoculant composition on microstructure and fatigue behaviour of heavy section ductile iron castings. Procedia Structural Integrity, 2, 3150–3157. doi:10.1016/j.prostr.2016.06.393
  7. Fourlakidis, V., Dioszegi, A. (2014). A generic model to predict the ultimate tensile strength in pearlitic lamellar graphite iron. Materials Science and Engineering: A, 618, 161–167. doi:10.1016/j.msea.2014.08.061
  8. Manasbekov, N. M. (2012). Vliianiia soderzhaniia sery na svoistva sinteticheskogo chuguna. Molodiozh' i nauka: Sbornik materialov VIII Vserossiiskoi nauchno-tehnicheskoi konferentsii studentov, aspirantov i molodyh uchionyh, posviashchennoi 155-letiiu so dnia rozhdeniia K. E. Tsiolkovskogo. Krasnoyarsk: Siberian Federal University. Available: http://conf.sfu-kras.ru/sites/mn2012/section37.html
  9. Bai, Y., Luan, Y., Song, N., Kang, X., Li, D., Li, Y. (2012). Chemical Compositions, Microstructure and Mechanical Properties of Roll Core used Ductile Iron in Centrifugal Casting Composite Rolls. Journal of Materials Science & Technology, 28 (9), 853–858. doi:10.1016/s1005-0302(12)60142-x
  10. Demin, D. A., Pelikh, V. F., Ponomarenko, O. I. (1995). Optimization of the method of adjustment of chemical composition of flake graphite iron. Litejnoe Proizvodstvo, 7-8, 42–43.
  11. Demin, D. A., Pelikh, V. F., Ponomarenko, O. I. (1998). Complex alloying of grey cast iron. Litejnoe Proizvodstvo, 10, 18–19.
  12. Bondarchuk, A. A., Matveev, M. G., Polianskii, Yu. A. (2007). Modeli upravleniia tverdost'iu metalla v usloviiah stohasticheskoi i nechetkoi neopredelennosti. Sistemy upravleniia i informatsionnye tehnologii, 4.1, 124–128.
  13. Bondarchuk, A. A., Matveev, M. G. (2007). Modeli vybora sostava v sisteme «sostav-svoistvo». Materialy XX mezhdunarodnoi nauchnoi konferentsii «Matematicheskie metody v tehnike i tehnologiiah». Vol. 2. Yaroslavl: Yaroslavl State Technical University, 139–140.
  14. Glinkov, G. M., Makovskii, V. A., Lotman, S. L., Shapirovskii, M. R. (1986). Proektirovanie sistem kontrolia i avtomaticheskogo regulirovaniia metallurgicheskih protsessov. Moscow: Metallurgiia, 352.
  15. Demin, D. A., Demina, E. B., Akimov, O. V. et al.; In: Demin, D. A. (2012). Resursosberegaiushchie tehnologii v liteinom proizvodstve. Kharkov: PC «TECHNOLOGY CENTER», 320.
  16. Hartman, K. et al. (1977). Planirovanie eksperimenta v issledovanii tehnologicheskih protsessov. Moscow: Mir, 542.
  17. Raskin, L. G., Seraya, O. V. (2008). Nechetkaia matematika. Kharkov: Parus, 352.
  18. Seraya, O. V., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi:10.1615/jautomatinfscien.v44.i7.40
  19. Demin, D. (2015). Mathematical modeling in the problem of selecting opti-mal control of obtaining alloys for machine parts in un-certainty conditions. Problems Of Mechanical Engineering, 16 (6), 15–23. Available: http://journals.uran.ua/jme/article/view/21309

Published

2017-01-31

How to Cite

Demin, D. (2017). Strength analysis of lamellar graphite cast iron in the «carbon (C) – carbon equivalent (Ceq)» factor space in the range of C = (3,425-3,563) % and Ceq = (4,214-4,372) %. Technology Audit and Production Reserves, 1(1(33), 24–32. https://doi.org/10.15587/2312-8372.2017.93178

Issue

Section

Metallurgical Technology: Original Research