Investigation of the processes for the restoration of peroxide lipids in blood and tissues of kidney of rats in the modeling of acute pyelonephritis and concomitant diabetes mellitus type II

Authors

  • S.A. Borisov Odessa National Medical University, Ukraine
  • F.I. Kostyev Odessa National Medical University, Ukraine
  • A.V. Borisov Odessa National Medical University, Ukraine

DOI:

https://doi.org/10.26641/2307-5279.23.2.2019.169150

Keywords:

pyelonephritis, pathogenesis, antioxidant system, diabetes mellitus, oxidative stress, enzymes, glutathione peroxidase

Abstract

In the pathogenesis of acute pyelonephritis, complicated by diabetes mellitus, an important role is played by impaired activity of the antioxidant system, the intensification of the processes of peroxidation and free radical oxidation. The development of an imbalance in the prooxidant-antioxidant system causes negative structural and functional changes in the kidneys, the search for drugs with an antioxidant effect to correct established metabolic disorders is relevant. Modeling of acute pyelonephritis in the presence of diabetes mellitus type II in rats was accompanied by a significant decrease in the recovery of peroxide lipids by glutathione peroxidase in blood plasma and kidney tissue. The application of the proposed method of drug correction contributed to a significant activation of the recovery of peroxide lipids by glutathione peroxidase in blood plasma and in the kidney tissue of animals with reconstituted acute pyelonephritis and concomitant diabetes.

References

Orchard T. J., Secrest A. M., Miller R. G., Costacou T. In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. 2010. Vol. 53, No. 11. Р. 2312–2319.

Afkrian М., Sachs M. C., Kestenbaum B. et al. Kidney disease and increased mortality risk in type 2 diabetes. Journal American Society of Nephrology. 2013. Vol. 24, No. 2. Р. 302–308.

Takiyama Y., Haneda M. Hypoxia in Diabetic Kidneys. BioMed Res. International. 2014. DOI: 10.1155/2014/837421.

Кожевников Ю. Н. О перекисном окислении липидов в норме и патологии. Вопр. мед. химии. 1985. № 5. С. 2–7.

Осипов А. Н., Азизова О. А., Владимиров Ю. А. Активные формы кислорода и их роль в организме. Успехи биологической химии. 1990. Т. 31, № 2. С. 180–208.

Пероксидное окисление липидов и стресс / В.А. Барабой и др. СПб.: Наука, 1992. 148 с.

Dalle-Donne I., Rossi R., Giustarini D. et al. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003. Vol. 329, No. 1–2. Р. 23–38.

Меньщикова Е. Б., Ланкин В. З., Зенков Н. К. и др. Окислительный стресс. Прооксиданты и антиоксиданты. М.: Слово, 2006. 556 с.

Shihamura T. Mechanisms of renal tissue destruction in an experimental acute pyelonephritis. Exp. Mol. Pathol. 1981. Vol. 34. P. 34–42.

Andreoli S. P. Reactive oxygen molecules, oxidant injury and renal disease. Pediatr. Nephrol. 1991. Vol. 5. Р. 733–742.

Kurutas E. B., Ciragil Р., Gul М., Kilinc М. The Effects of Oxidative Stress in Urinary Tract Infection. Mediators of Inflammation. 2005. V. 4. Р. 242–244.

Sener G., Tugtepe Н., Velioglu-Ogunc А. et al. Melatonin prevents neutrophil-mediated oxidative injury in Escherichia coli-induced pyelonephritis in rats. J. Pineal. Res. 2006. V. 41. Р. 220–227.

Petrovic S., Bogavac-Stanojevic N., Kotur-Stevuljevic J. et al. Oxidative status parameters in children with urinary tract infection. Biochemia Medica. 2014. Vol. 24, No. 2. Р. 266–272.

Гоженко А. И., Гоженко Е. А. Функциональный почечный резерв в физиологии и патологии почек. Буковинський медичний вісник. 2012. Т. 16, № 3; ч. 2. С. 18–25.

Berg U. Renal function in acute febrile urinary tract infection in children: Pathophysiologic aspects on the reduced concentrating capacity. Kidney International. 1981. V. 20. Р. 753–758.

Hannerz L., Celsi G., Eklof F.-Ch. et al. Ascending pyelonephritis in young rats retards kidney growth. Kidney International. 1989. V. 35. P. 1133–1137.

Tardif М., Beauchamp D., Bergeron Y. et al. L-651,392, a Potent Leukotriene Inhibitor, Controls Inflammatory Process in Escherichia coli Pyelonephritis. Antimicrobial Agents and Chemotherapy. 1994. Vol. 38, No. 7. Р. 1555–1560.

Гоженко А. И., Кузнецова Е. С., Кузнецова Е. Н. Функциональный почечный резерв у больных с сахарным диабетом 2 типа и хронической болезнью почек. Нефрология. 2015. Т. 19, № 4. С. 95–99.

Fogarty D. G., Rich S. S., Hanna L. et al. Urinary albumin excretion in families with type 2 diabetes is heritable and genetically correlated to blood pressure. Kidney Int. 2000. Vol. 57, No. 1. Р. 250–257.

Маркова Т. Н., Садовская В. В., Беспятова М. Ю. Современные возможности диагностики при хронической болезни почек при сахарном диабете. Сахарный диабет. 2017. Т. 20, № 6. Р. 454–460.

Johnson R. M., Goyette G., Ravindranath Jr. Y., Ho Y. S. Red cells from glutathione peroxidase-1 – deficient mice have nearly normal defenses against exogenous peroxides. Blood. 2000. Vol. 96. Р. 1985–1888.

Сафонова О. А., Попова Т. Н., Саиди Л. Влияние цитрата на функционирование глутатионовой антиоксидантной системы в тканях крыс при экспериментальном токсическом гепатите. Вестник ВГУ. Химия. Биология. Фармация. 2008. № 2. С. 112–116.

Goyal R., Singhai M., Faizy A. F. Glutathione peroxidase activity in obese and nonobese diabetic patients and role of hyperglycemia in oxidative stress. J. Midlife Health. 2011. Vol. 2, No. 2. Р. 72–76.

Gonzalez de Vega R., Fernandez-Sanchez M. L., Fernandez J. C. et al. Selenium levels and Glutathione peroxidase activity in the plasma of patients with type II diabetes mellitus. J. Trace Elem. Med. Biol. 2016. V. 37. Р. 44–49.

Dennis J. M., Witting P. K. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients. 2017. Vol. 9, No. 7. P. 718–742. DOI: 10.3390/nu9070718.

Модель М. А. К определению активности глутатионпероксидазы. Вопр. мед. химии. 1989. № 4. С. 132–133.

Published

2019-05-30

Issue

Section

Urology