BIOINDICATION «ZERO-MOMENT» SOIL FORMATION

Authors

DOI:

https://doi.org/10.33730/2310-4678.3.2020.212606

Abstract

The aim of the study was to determine the «zero moment» in terms of particle size distribution of different age rock dumps of Donbass mines, their nutritional regime, overgrowth of soil algae. To determine the species
composition of soil algae, early samples were taken from 5 different age rock dumps of the following mines:
«Pivdenno-Donbaska-1», «Pivdenno-Donbaska-3» (rock storage not more than 45 years); mine managemen
№ 5 «Zakhidne», «Trudivska» № 5-bis, «Shchurivka-1» (storage for over 100 years). The species composition
of soil algae and their quantitative accounting were determined according to the determinants and methods
generally accepted in soil and algological studies: microscopy of freshly selected soil and culture methods, of which cup cultures with agglomeration glasses on agar medium were preferred. Types of algae were determined by domestic and foreign determinants, life forms — by the classification of E. Shtyna, systematic structure —
by the system of I. Kostikov. Agrochemical indicators of the breed were determined by: pH of water — DSTU 26483-85; humus — DSTU 26213-91; nitrate nitrogen — DSTU 4729; mobile phosphorus, exchangeable potassium — DSTU 4115-2002; particle size distribution — DSTU 4730: 2007. Determination of granulometric fractions of 0-20 cm layer of waste heaps of mines shows a potential increase with age of the heap of small fractions and a decrease in the fraction of stones from 84% on the heap of the mine «Pivdenno-Donbaska -3» to 48,7% on the heap «Shchurivka-1». In terms of content, small fractions almost reach the stone fraction in the dump of the mine management № 5 «Zakhidne» (45,4% and 54,6%), and predominate in the dump of the mine «Schurivka-1». The share of mu-leaf fraction is not high in all dumps and does not exceed 1%, which indicates the beginning of the process of structure formation. The
supply of rock of the studied dumps with nitrogen is very low, the mobile phosphorus is very low and low
(«Shchurivka-1» and mine management № 5 «Zakhidne»), exchangeable potassium is very low (<20). On the surface of the dumps we found 80 species of algae from 5 divisions, 6 classes, 17 orders, 31 families, 45 genera. The least represented algae from the department of Eustigmatophyta — 7 species (8,7%), slightly more — algae from the department of Bacillariophyta — 10 species (12,5%) and Xanthophyta — 12 species (15,0%). In waste heaps, the structure of algal groups is close to the structure of background soils,
where the share of blue-green algae is 50 species (39,1%), green — 40 (31,3%), yellow-green — 20 (15,6)%), diatoms — 14 (10,9%), eustigmats — 4 (3,1%). Bracteacoccaceae and Phormidiaceae dominated the families. The dominance of Chlorophyta and Cyanophyta indicates a steppe process of soil formation. They are characterized by high resistance to adverse living conditions. The appearance of algae in the mineral rock is the beginning of soil formation.

Author Biographies

S. Bulygin, National University of Life and Environmental Sciences of Ukraine

Doctor of Agricultural Sciences, Professor, Academician of NAAS

S. Vitvitsky, National University of Life and Environmental Sciences of Ukraine

candidate of agricultural sciences

L. Kucher, National University of Life and Environmental Sciences of Ukraine

candidate of agricultural sciences

D Antonyuk, National University of Life and Environmental Sciences of Ukraine

graduate student

M Chayka, Kharkiv State Agrarian University named after V.V. Dokuchaeva

Doctor of Agricultural Sciences

References

Mala hirnycha entsyklopediia [Small mining encyclopedia]. (2013). 1t. za red. V.S. Biletskoho. Donetsk: Skhidnyi vydavnychyi dim, 1936 s. [in Ukrainian].

Provedenie rabot po inventarizatsii istochnikov vyibrosov (porodnih otvalov: otchet NIR) [Carrying out of works on inventory of sources of emissions (waste heaps: the report of Research]. works). (2004). ZAO Tehnologicheskiy park «Uglemash», 701 s. [in Russian].

Popovych, V.V. Pinder, V.F. (2016). Osoblyvosti provedennia hirnychotekhnichnoho etapu re-kultyvatsii terykoniv u mezhakh Lvivsko-Volynskoho vuhilnoho baseinu [Features of the mining stage of re-cultivation of heaps within the Lviv-Volyn coal basin]. Visnyk LDU BZhD. 14. 93–101. http://nbuv.gov.ua/UJRN/Vldubzh_2016_14_12 [in Ukrainian].

Lisiecki, F.N., Goleusov, P.V., Kuharuk N.S., Chepelev O.A. (2007). Ekologicheskie aspektyi vosproizvodstva pochvenno-rastitelnogo pokrova v narushennyih gornodobyivayuschey promyishlennos-tyu landshaftah [Ecological aspects of soil and vegetation reproduction in landscapes disturbed by the mining industry]. Electronic scientific journal «Investigated in Russia». P. 2233–2250. http://zhurnal.ape.relarn.ru/articles/2005/217.pdf [in Russian].

Yeterevska, L.V. (1977). Rekultyvatsiia zemel [Land reclamation]. Kyiv: Urozhai, 125s. [in Ukrainian].

Pevzner, M.E., Kostovetsiy, V.P. (1990). Ekologiya gornogo proizvodstva [Ecology of mining]. Moskva: Nedra, 253 s. [in Russian].

Tomakov, P.I. (1994). Ekologiya i ohrana prirodyi pri otkryityih gornyih rabotah [Ecology and nature protection in opencast mining]. Moskva: MGU, 418 s. [in Russian].

Kabirov, R.R. (1997). Uchastie pochvennyih vodorosley v protsessah formirovaniya rasti-telnogo pokrova na otvalah Kansko-Achinskogo ugolnogo mestorozhdeniya (KATEK) [Participation of soil algae in the processes of vegetation formation on the dumps of the Kansk-Achinsk coal field (KATEK)]. Ekologiya, 3. 218–228. [in Russian].

Shushueva, M.G. (1988). Dinamika biomassyi pochvennyih vodorosley v lesnyih rekultiva-tsionnyih ekosistemah yuzhnogo Kuzbassa [Dynamics of soil algae biomass in forest reclamation ecosystems of the southern Kuzbass]. Botan. zhurnal., 73, 10, 1417–1423 [in Russian].

Rahmonov, O., Szymczyk, A. (2010). Relations between vegetation and soil in initial succession phases inpost-sand excavations [Relations between vegetation and soil in initial succession phases inpost-sand excavations]. Ecology, 29, 4, 412–429. https://doi.org/10.4149/ekol_2010_04_412

Negrutskiy, S.F. (1990). Fiziologiya i biohimiya nizshih rasteniy [Physiology and biochemistry of lower plants]. Kyiv: Vischa shkola, 192 s. [in Russian].

Maltseva, I.A. (2001). Pochvennyie vodorosli kak odin iz dopolnitelnyih faktorov ge-neratsii pochvennyih protsessov v lesnyih rekultivatsionnyih sistemah Zapadnogo Donbassa [Soil algae as one of the additional factors in the generation of soil processes in the forest reclamation systems of the Western Donbass]. Gruntoznavstvo, 1–2, 1, 81–86 [in Russian].

Shtina, E.A., Gollerbakh, M.M. (1976). Ekologiya pochvennyih vodorosley [Ecology of soil algae]. Moskva: Nauka. 143 s. [in Russian].

Rahmonov, O. (1999). Processes of overgrowing in the Błędów Desert (Southern Poland). University of Silesia: Faculty of Earth Sciences Publishing. 71 p. [in English].

West, N.E. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semiarid regions. Advances in Ecological Research. 1990. V. 20. P. 197–223. https://doi.org/10.1016/s0065-2504(08)60055-0 [in English].

Jayne Belnap, Kimball Harper, Steven Warren. Surface disturbance of cryptobiotic soil crusts: Nitrogenase activity, chlorophyll content, and chlorophyll degradation. Arid Soil Research and Rehabilitation. 1994 V. P. 1–8. https://doi.org/10.1080/15324989309381373 [in English].

Evans, R.D., Lange, O.L. Biological soil crusts and ecosystem nitrogen and carbon dynamics. Biological soil crusts: Structure, function, and management. Ecological Studies. 2003. V. 150. P. 263–279. https://doi.org/10.1007/978-3-642-56475-8_20 [in English].

Eldridge, D.J. Biological soil crusts and water relations in Australian Deserts. Biological soil crusts: Structure, function, and management. Ecological Studies. 2003. V. 150. P. 315-325. https://doi.org/10.1007/978-3-642-56475-8_23 [in English].

Kabirov R.R., Gaysina L.A. (2009). Pokazateli produktivnosti pochvennyih vodorosley v nazemnyih ekosistemah. [Indicators of soil algae productivity in terrestrial ecosystems]. Pochvovedenie. M.: Nauka, 9. 1475–1480. https://www.researchgate.net/publication/272375903_Kabirov_RR_Gajsina_LA_Pokazateli_produktivnosti_pocvennyh_vodoroslej_v_nazemnyh_ekosistemah_Pocvovedenie_2009_No_12_S_1475–1480 [in Russian].

Chubuk, N.N. (2005). Ekologicheskaya harakteristika soobschestv pochvennyih vodorosley gorodskih ekosistem [Ecological characteristics of soil algae communities of urban ecosystems]: Sb. materialov III Mezhdunarodnoy konferentsii «Aktualnyie pro-blemyi sovremennoy algologii», Harkov, (19–22 aprelya). S. 177–178. [in Russian].

Jainendra Pathak, Haseen Ahmed, Prashant R. Singh, Shailendra P. Singh, Donat-P. Häder, Rajeshwar P. Sinha. (2019). Mechanisms of Photoprotection in Cyanobacteria Cyanobacteria From Basic Science to Applications. P. 145–171. https://doi.org/10.1016/B978-0-12-814667-5.00007-6 [in English].

Lingui Xue, Yong Zhang, Tengguo Zhang, Lizhe An, Xunling Wang. Effects of Enhanced Ultraviolet-B Radiation on Algae and Cyanobacteria. 2005. Critical Reviews in Microbiology, 31, 2, 79–89. https://doi.org/10.1080/10408410590921727 [in English].

Buchinskiy, I.E. (1963). Klimat Ukrainyi v proshlom, nastoyaschem i buduschem [Climate of Ukraine in the past, present and future]. Kyiv: Gosselhozizdat, 308 s. [in Russian].

Andreeva, V.M. (1998). Pochvennyie i aerofilnyie zelyonyie vodorosli (Chlorophyta; Tetrasporales, Chlorococcales, Chlorosarcinales) [Climate of Ukraine in the past, present and future]. Botanicheskiy institut im. V.M. Komarova RAN SPb, Nauka. 350 s. [in Russian].

Kostikov, I.Iu., Romanenko, P.O., Demchenko, E.M. et al. (2001). Vodorosti gruntiv Ukrainy (istoriia ta metody doslidzhennia, systema, konspekt flory) [Algae of soils of Ukraine (history and research methods, system, summary of flora)]; Kyiv: Fitosotsiol. tsentr. 300 s. [in Ukrainian].

Kondratieva, N.V. (1968). Synozeleni vodorosti — Cyanophyta [Blue-green algae — Cyanophyta]. Ch. 2. Klas hormohoniievi — Hormogoniopheceae. Vyznachnyk prisnovodnykh vodorostei Ukrainskoi RSR. Vyp. 1. Kyiv: Naukova dumka. 524 s. [in Ukrainian].

Kondratieva, N.V., Kovalenko, O.V., Prykhodkova, L. P. (1984). Synozeleni vodorosti — Cyanophyta [Blue-green algae. — Cyanophyta]. Ch. 1. Klas khrookokovi — Chroococcophyceae. Klas khamesyfonovi — Chamaesiphonophyceae. Vyznachnyk prisnovodnykh vodorostei Ukrainskoi RSR. Vyp. Kyiv: Naukova dumka. 388 s. [in Ukrainian].

Matviienko, O.M., Dohadina, T.V. (1978). Zhovto-zeleni vodorosti Xantophyta (Vyznachnyk prisnovodnykh vodorostei Ukrainskoi RSR. [Yellow-green algae Xantophyta (Determinant of freshwater algae of the Ukrainian SSR]. 10. Kyiv: Naukova dumka. 512 s. [in Ukrainian].

Moshkova, N.A., Gollerbah, M.M. (1986). Zelyonyie vodorosli. Klass Ulotriksovyie. Poryadok Ulot-riksovyie. Chlorophyta, Ulotrichophyceae, Ulotrichales. [Green algae. Ulotrix class. In order Ulotrix. Chlorophyta, Ulotrichophyceae, Ulotrichales]. (Opredelitel presnovodnyih vodorosley SSSR, 10. Leningrad. 360 s. [in Russian].

Prihodkova, L. P.(1992). Sinezelyonyie vodorosli stepnoy zonyi Ukrainyi [Blue-green algae of the steppe zone of Ukraine]. Kyiv: Naukova dumka. 218 s. [in Russian].

Shtina, E.A., Neganova, L.B., Shushueva M.G., Lanina R.I. (1978). Zadachi i metodyi izuche-niya vodorosley, razvivayuschihsya na promyishlennyih otvalah. [Tasks and methods of studying algae growing on industrial dumps]. Programma i metodika izucheniya tehnogennyih biogeotsenozov; Moskva: Nauka. S. 73–88 [in Russian].

Zubov, A.O. (2019). Ekolohichna nebezpeka porodnykh vuhilnykh vidvaliv u ahrolandshaftakh [Ecological danger of waste coal heaps in agrolandscapes]. Ahroekolohichnyi zhurnal. 12. https://doi.org/10.33730/2077-4893.2.2019.174013 [in Ukrainian].

Medvedev, V.V., Laktionova, T.N. (2011). Granulometricheskiy sostav pochv Ukrainyi (geneticheskiy, ekologicheskiy i agronomicheskiy aspektyi [Granulometric composition of soils of Ukraine (genetic, ecological and agronomic aspects)]; Harkov: Apostrof. 292 s. [in Russian].

Scherbina, V.V., Maltseva, I.A. (2012). Izmenenie bioraznoobraziya sinezelenyih vodorostey v usloviyah antropogennogo vozdeystviya. [Changes in the biodiversity of blue-green algae under conditions of anthropogenic impact]. Ekosistemyi, ih optimizatsiya i ohrana, 7, 270-274. https://cyberleninka.ru/article/n/izmenenie-bioraznoobraziya-sinezelenyh-vodorosley-v-usloviyah-antropogennogo-vozdeystviya [in Russian].

Tarchevskiy, V.V., Shtina, E.A. (1976). Razvitie vodorosley na promyishlennyih otvalah. Sovremennoe sostoyanie i perspektivyi izucheniya pochvennyih vodorosley v SSSR [Development of algae on industrial dumps. Current state and prospects for the study of soil algae in the USSR]: tr. mezhvuz. konf.; Kirov. S. 146–150 [in Russian].

Safonova, H.S., Reva, S.V.(2009). Zaselennia vyshchymy roslynamy zalizorudnykh vidvaliv Kryvbasu [Settlement of iron ore dumps of Kryvbas by higher plants]. Visnyk Dnipropetrovskoho universytetu. Biolohiia. Ekolohiia. 17, 2, 87–94. http://oaji.net/articles/2014/773-1400614201.pdf [in Ukrainian].

Chaika, M., Maltseva, I. (2013). Struktura ta ekolohichni osoblyvosti alhoflory porod-nykh gruntiv vuhilnykh vidvaliv Donetskoi oblasti. [Structure and ecological features of algae flora of rocky soils of coal heaps of Donetsk region]. Visnyk Lvivskoho universytetu. Seriia heohrafichna. 44, 379–387 http://dx.doi.org/10.30970/vgg.2013.44.1246 [in Ukrainian].

Shtina, E.A., Neganova, L.B., Elshina, T.A. (1985). Osobennosti pochvennoy algofloryi v usloviyah tehnogennogo zagryazneniya [Features of soil algoflora in the conditions of technogenic pollution]. Pochvovedenie, 10, 97–107 [in Russian].

Published

2020-09-22

Issue

Section

ECOLOGY