PHYTOPATHOGENIC COMPLEX STRUCTURE OF RADISH UNDER OPEN-GROUND CULTIVATION IN THE RIGHT-BANK FOREST-STEPPE OF UKRAINE

Authors

DOI:

https://doi.org/10.33730/2310-4678.4.2023.296367

Keywords:

phytopathogenic microorganisms, dominant species, spread of diseases, development of diseases

Abstract

The features of the phytopathogenic background formation in radish crops under open-ground cultivation in the territory of the Right-Bank Forest-Steppe of Ukraine for the years 2008–2022 were analyzed. It was determined that the phytosanitary condition of radish crops is environmentally hazardous and requires strict control of disease agents. A total of 48 species of phytopathogens were identified on plants, including 4 species of viruses, 11 species of bacteria, 25 species of fungi, and 8 species of oomycetes, causing 24 types of diseases. Accordingly, in the structure of the phytopathogenic complex, fungi occupied — 52%, bacteria — 23%, oomycetes — 17%, viruses — 8%. Pathogens causing damping-off (Phytophthora spp., Fusarium spp., Pythium debaryanu, Rhizoctonia solani), fusariosis (Fusarium avenaceum, F. graminearum, F. moniliforme Schw., F. oxysporum f. sp. raphani), and phomosis (Phoma exigna, P. lingam (Tode) Desm.) were identified with high frequency in radish crops. Among the identified phytopathogens, seven species were recognized as the most dangerous worldwide: Cucumber mosaic virus, Tomato spotted wilt virus, Ralstonia solanacearum, Botrytis cinerea Fr., Fusarium graminearum, Fusarium oxysporum, Albugo candida. The dominant diseases of radish during 2008–2022 were downy mildew and powdery mildew, affecting an average of 5–16% (max 20%) of the crop area. The most widespread diseases on plants were powdery mildew (21–30%), downy mildew (18–28%), various types of rots (15–26%), bacterial leaf spot (18–22%), and fusariosis (15–23%), with symptoms appearing at almost all stages of radish plant organogenesis. Critical stages were found to be the initial phases (BBCH 0–9, BBCH 10–11) and the period of root formation and growth (BBCH 41, BBCH 42–48).

References

Soundararajan, P., Kim, J. (2018). Anticarcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancer. Molecules, 23, 2983. DOI: 10.3390/molecules23112983 [in English].

Beevi, S.S., Mangamoori, L.N., Gowda, B.B. (2012). Polyphenolics profile and antioxidant properties of Raphanus sativus L. Nat. Prod. Res., 26, 557–563. DOI: 10.1080/14786419.2010.521884 [in English].

Castro-Torres, I.G., De la O-Arciniega, M., Gallegos-Estudillo, J., Naranjo-Rodríguez, E.B., DomínguezOrtíz, M.Á. (2014). Raphanus sativus L. var. Niger as a source of phytochemicals for the prevention of cholesterol gallstones. Phytother. Res., 28, 167–171. DOI: 10.1002/ptr.4964 [in English].

Park, C.H., Ki, W., Kim, N.S., Park, S.-Y., Kim, J.K., Park, S.U. (2022). Metabolic Profiling of White and Green Radish Cultivars (Raphanus sativus). Horticulturae, 8 (4), 310. DOI: https://doi.org/10.3390/horticulturae8040310 [in English].

Björkman, M., Klingen, I., Birch, A.N. et al. (2011). Phytochemicals of Brassicaceae in plant protection and human health — Influences of climate, environment and agronomic practice. Phytochemistry, 72, 538–556. DOI: 10.1016/j.phytochem.2011.01.014 [in English].

Domínguez-Perles, R., Mena, P., Garcia-Viguera, C., Moreno, D. (2014). Brassica foods as a dietary source of vitamin C: A review. Crit. Rev. Food Sci. Nutr, 54, 1076–1091. DOI: 10.1080/10408398.2011.626873 [in English].

Shchetyna, S. (2023). Otsinka stanu vyroshchuvannia ovochevykh kultur v umovakh vidkrytoho gruntu v Ukraini [Assessment of vegetable crop cultivation in open ground conditions in Ukraine]. Zbalansovane pryrodokorystuvannia — Balanced nature using, 3, 144–152. DOI: 10.33730/2310-4678.3.2023.287829 [in Ukrainian].

Nishio, T. (2017). Economic and Academic Importance of Radish. In: Nishio, T., Kitashiba, H. (eds). The Radish Genome. Compendium of Plant Genomes. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-59253-4_1 [in English].

Manivannan, A., Kim, J.H., Kim, D.S., Lee, E.S., Lee, H.E. (2019). Deciphering the Nutraceutical Potential of Raphanus sativus — A Comprehensive Overview. Nutrients, 11 (2), 402. DOI: 10.3390/nu11020402 [in English].

Saha, S., Paul, S., Afroz, A., Dey, A., Chatterjee, A., Khanra, R. (2023). Raphanus sativus — a review of its traditional uses, phytochemistry, and pharmacology. Asian J Pharm Clin Res, 16 (7), 7–12. DOI:10.22159/ajpcr.2023.v16i7.47468 [in English].

Zhang, L., Zhu, Z., Chen, F., Zhu, Y., Guo, X., Fu, M., Zhu, Z. (2023). Production and identification of × Brassicoraphanus distant hybrids between radish (Raphanus sativus L.) and kohlrabi (Brassica oleracea L. var. Caulorapa DC.). N. Z. J. Crop Hortic. Sci., 51 (3), 341–354. DOI: 10.1080/01140671.2021.1971267 [in English].

Santos, P.A.B., Carvalho, L.G., Schwerz, F., Baptista, V.B.S., Monti, C.A.U. (2022). Economic viability and development of radish (Raphanus sativus L.) under different soil water tensions and mulching types. Adv. Hort. Sci., 36 (3), 227–237. DOI: 10.36253/ahsc12552 [in English].

Kumar, S., Layek, S., Upadhyay, A. (2019). Potential impact of climate changes on quality, biotic and abiotic stresses in vegetable production — A Review. Int. J. Chem. Stud., 7, 636–643 [in English].

Tkalenko, H. (2020). Khvoroby ovochevykh kultur [Diseases of vegetable crops]. Propozytsiia — Рroposal, 1. URL: https://propozitsiya.com/ua/hvorobi-ovochevih-kultur [in Ukrainian].

Mostoviak, I.I., Demyanyuk, O.S., Borodai, V.V. (2020). Osoblyvosti formuvannia fitopatohennoho fonu mikromitsetiv — zbudnykiv khvorob v ahrotsenozakh zernovykh zlakovykh kultur Pravoberezhnoho Lisostepu Ukrainy [Formation of phytopathogenic fond in agrocenoses of cereals of the right-bank Foreststeppe of Ukraine]. Ahroekolohichnyy zhurnal — Agroecological journal, 1, 28–38. DOI: https://doi.org/10.33730/2077-4893.1.2020.201266 [in Ukrainian].

Hampton, J.G., Rolston, M.P., Pyke, N.B., Green, W. (2012). Ensuring the long term viability of the New Zealand seed industry. Agronomy New Zealand, 42, 129–140 [in English].

Lee, J. (2018). Bio-control of the soil-borne pathogen Rhizoctonia solani of radish (Raphanus sativus L.) by Trichoderma species. New Zealand: Lincoln University [in English].

Yang, H., Zheng, J., Fu, Y.D. et al. (2020). Specific genes and sequence variation in pathotype 7 of the clubroot pathogen Plasmodiophora brassicae. Eur. J. Plant Pathol., 1, 1–12. DOI: 10.1007/s10658-020-01968-0 [in English].

Kageyama, K., Asano, T. (2009). Life cycle of Plasmodiophora brassicae. J. Plant Growth Regul, 28, 203–211. DOI: 10.1007/s00344-009-9101-z [in English].

Kowata-Dresch, L.S., Mio, M.D. (2012). Clubroot management of highly infested soils. J. Crop Prot., 35, 47–52. DOI: 10.1016/j.cropro.2011.12.012 [in English].

Li, J., Huang, T., Lu, J., Xu, X., Zhang, W. (2022). Metabonomic profiling of clubroot-susceptible and clubroot-resistant radish and the assessment of disease-resistant metabolites. Front. Plant Sci., 13, 1037633. DOI: 10.3389/fpls.2022.1037633 [in English].

Kareem, T.A., Hassan, M.S. (2015). Comparison of Rhizoctonia solani isolated from soil in Baghdad — Iraq genetically with world isolates. Donnish Journals of Agricultural Research, 2 (3), 20–26 [in English].

Lakra, B.S. (2001). Epiphytology and losses of downy mildew (Peronospora parasitica) of radish (Raphanus sativus) seed crop. Indian J. Agric. Sci., 71, 321–324 [in English].

O’Sullivan, C.A., Belt, K., Thatcher, L.F. (2021). Tackling Control of a Cosmopolitan Phytopathogen: Sclerotinia. Front. Plant Sci., 12, 707509. DOI: 10.3389/fpls.2021.707509 [in English].

Saharan, G.S., Mehta, N. (2008). Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management. Berlin: Springer [in English].

Elsharkawy, M.M., Kuno, S., Hyakumachi, M., Mostafa, Y.S., Alamri, S.A., Alrumman, S.A. (2022). PCRDGGE Analysis Proves the Suppression of Rhizoctonia and Sclerotium Root Rot Due to Successive Inoculations. J Fungi (Basel), 8 (2), 133. DOI: 10.3390/jof8020133 [in English].

IPPC Secretariat (2021). Scientific review of the impact of climate change on plant pests — A global challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems. Rome. FAO on behalf of the IPPC Secretariat. DOI: https://doi.org/10.4060/cb4769en [in English].

Gilardi, G., Garibaldi, A., Gullino, M.L. (2018). Emerging pathogens as a consequence of globalization and climate change: Leafy vegetables as a case study. Phytopathologia Mediterranea, 57, 146–152. DOI: https://doi.org/10.14601/Phytopathol_Mediterr-21899 [in English].

Settanni, L., Miceli, А., Francesca, N., Cruciata, М., Moschetti, G. (2013). Microbiological investigation of Raphanus sativus L. grown hydroponically in nutrient solutions contaminated with spoilage and pathogenic bacteria. International Journal of Food Microbiology, 160 (3), 344–352. DOI: https://doi.org/10.1016/j.ijfoodmicro.2012.11.011 [in English].

Magnuson, J.A., King, Jr., Torok, T. (1990). Microflora of partially processed lettuce. Applied and Environmental Microbiology, 56, 3851–3854. DOI: 10.1128/aem.56.12.3851-3854.1990 [in English].

Omeliuta, V.P., Hrihorovych, I.V., Chaban, V.S. et al. (1986). Oblik shkidnykiv i khvorob silskohospodarskykh kultur [Accounting for pests and diseases of crops]. Kyiv: Urozhai [in Ukrainian].

Trybel, S.O., Hetman, M.V., & Andrushchenko, A.V. (2010). Metodolohiia otsiniuvannia stiikosti sortiv pshenytsi proty shkidnykiv i zbudnykiv khvorob. [Methodology for evaluating the resistance of wheat varieties against pests and pathogens]. Kyiv: Kolobih [in Ukrainian].

Shevchenko, Zh.P. (1996). Virusni ta mikoplazmovi khvoroby zernovykh kolosovykh kultur (rekomendatsii) [Viral and mycoplasma diseases of cereal crops (recommendations)]. Kirovohrad [in Ukrainian].

Venbrux, M., Crauwels, S., Rediers, H. (2023). Current and emerging trends in techniques for plant pathogen detection. Front. Plant Sci., 14, 1120968. DOI: 10.3389/fpls.2023.1120968 [in English]

Published

2023-10-25

Issue

Section

Articles