Химия ароматов вина
DOI:
https://doi.org/10.15673/2073-8684.30/2015.38426Schlagworte:
аромат, букет, терпены, норизопреноиды, эфиры, фенилпропаноиды, метоксипиразиныAbstract
В статье рассмотрены различные классы химических соединений винограда и вина, их химические и биохимические превращения, которые влияют на формирование аромата и букета вина.
Происхождение аромата и букета вина представляет большой интерес в течение последнего столетия, в связи с достижениями современных аналитических, сенсорных методов, многомерных статистических сравнений. В аромате вина заключается фактически 90 % всей информации о напитке. В мировой энологической и научно-исследовательской практике разработаны методические подходы к сенсорной оценке аромата/букета виноматериалов и вин, которые позволяют в числовом выражении отразить его особенности по интенсивности отдельных оттенков. Однако субъективность органолептического метода не позволяет использовать его как основной. Сочетание аналитических и сенсорных методик является особенно важным в решении влияния взаимодействий ароматических соединений с нелетучими соединениями, а также с другими летучими соединения. Эти взаимодействия могут привести к изменениям ароматического профиля вина за счет улучшения восприятия и подавления отрицательных эффектов, а также благодаря физико-химическим воздействиям на летучесть и выделение ароматических соединений.
Literaturhinweise
Scheele, C. W., & De Morveau, C. P. G. (2009). Mémoires De Chymie, Parts 1-2 (1785).
Polášková, P., Herszage, J., & Ebeler, S. E. (2008). Wine flavor: chemistry in a glass. Chemical Society Reviews, 37(11), 2478-2489.
Noble, A. C., & Ebeler, S. E. (2002). Use of multivariate statistics in understanding wine flavor. Food Reviews International, 18(1), 1-20.
Ponomarev, D.A., & Fedorova Je.I. (2014). Osnovy himii terpenov: Uchebnoe posobie. Syktyvkar, ST: SLI.
Pezzuto, J. M. (2008). Grapes and human health: a perspective. Journal of agricultural and food chemistry, 56(16), 6777-6784.
Mateo, J. J., & Jiménez, M. (2000). Monoterpenes in grape juice and wines. Journal of Chromatography A, 881(1), 557-567.
Parker, M., Pollnitz, A. P., Cozzolino, D., Francis, I. L., & Herderich, M. J. (2007). Identification and quantification of a marker compound for'pepper'aroma and flavor in shiraz grape berries by combination of chemometrics and gas chromatography-mass spectrometry. Journal of agricultural and food chemistry, 55(15), 5948-5955.
Sefton, M. A., Francis, I. L., & Williams, P. J. (1993). The volatile composition of Chardonnay juices: a study by flavor precursor analysis. American Journal of Enology and Viticulture, 44(4), 359-370.
Mendes-Pinto, M. M. (2009). Carotenoid breakdown products the—norisoprenoids—in wine aroma. Archives of Biochemistry and Biophysics, 483(2), 236-245.
Janusz, A., Capone, D. L., Puglisi, C. J., Perkins, M. V., Elsey, G. M., & Sefton, M. A. (2003). (E)-1-(2, 3, 6-Trimethylphenyl) buta-1, 3-diene: a potent grape-derived odorant in wine. Journal of agricultural and food chemistry, 51(26), 7759-7763.
Ruyter-Spira, C., Al-Babili, S., van der Krol, S., & Bouwmeester, H. (2013). The biology of strigolactones. Trends in plant science, 18(2), 72-83.
Wang, J., & Luca, V. D. (2005). The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including ‘foxy’methylanthranilate. The Plant Journal, 44(4), 606-619.
Kennison, K. R., Gibberd, M. R., Pollnitz, A. P., & Wilkinson, K. L. (2008). Smoke-derived taint in wine: the release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. Journal of agricultural and food chemistry, 56(16), 7379-7383.
de Pinho, P. G., & Bertrand, A. (1995). Analytical determination of furaneol (2, 5-dimethyl-4-hydroxy-3 (2H)-furanone). Application to differentiation of white wines from hybrid and various Vitis vinifera cultivars. American journal of enology and viticulture, 46(2), 181-186.
Dunlevy, J. D., Soole, K. L., Perkins, M. V., Dennis, E. G., Keyzers, R. A., Kalua, C. M., & Boss, P. K. (2010). Two O-methyltransferases involved in the biosynthesis of methoxypyrazines: grape-derived aroma compounds important to wine flavour. Plant molecular biology, 74(1-2), 77-89.
Francis, I. L., & Newton, J. L. (2005). Determining wine aroma from compositional data. Australian Journal of Grape and Wine Research, 11(2), 114-126.
Sarrazin, E., Dubourdieu, D., & Darriet, P. (2007). Characterization of key-aroma compounds of botrytized wines, influence of grape botrytization. Food chemistry, 103(2), 536-545.
Genovese, A., Gambuti, A., Piombino, P., & Moio, L. (2007). Sensory properties and aroma compounds of sweet Fiano wine. Food Chemistry, 103(4), 1228-1236.
Miklósy, É., & Kerényi, Z. (2004). Comparison of the volatile aroma components in noble rotted grape berries from two different locations of the Tokaj wine district in Hungary. Analytica Chimica Acta, 513(1), 177-181.
Saerens, S. M., Delvaux, F. R., Verstrepen, K. J., & Thevelein, J. M. (2010). Production and biological function of volatile esters in Saccharomyces cerevisiae. Microbial biotechnology, 3(2), 165-177.
Pérez-Coello, M. S., González-Viñas, M. A., Garcıa-Romero, E., Dıaz-Maroto, M. C., & Cabezudo, M. D. (2003). Influence of storage temperature on the volatile compounds of young white wines. Food Control, 14(5), 301-306.
Richter, C. L., Dunn, B., Sherlock, G., & Pugh, T. (2013). Comparative metabolic footprinting of a large number of commercial wine yeast strains in Chardonnay fermentations. FEMS yeast research, 13(4), 394-410.
Dubourdieu, D., & Tominaga, T. (2009). Polyfunctional thiol compounds. In Wine chemistry and biochemistry (pp. 275-293). Springer New York.
Giudici, P., & Kunkee, R. E. (1994). The effect of nitrogen deficiency and sulfur-containing amino acids on the reduction of sulfate to hydrogen sulfide by wine yeasts. American Journal of Enology and Viticulture, 45(1), 107-112.
Winter, G., Henschke, P. A., Higgins, V. J., Ugliano, M., & Curtin, C. D. (2011). Effects of rehydration nutrients on H2S metabolism and formation of volatile sulfur compounds by the wine yeast VL3. AMB express, 1(1), 1-11.
Tominaga, T., Baltenweck-Guyot, R., Des Gachons, C. P., & Dubourdieu, D. (2000). Contribution of volatile thiols to the aromas of white wines made from several Vitis vinifera grape varieties. American Journal of Enology and Viticulture,51(2), 178-181.
Capone, D. L., Sefton, M. A., Hayasaka, Y., & Jeffery, D. W. (2010). Analysis of precursors to wine odorant 3-mercaptohexan-1-ol using HPLC-MS/MS: resolution and quantitation of diastereomers of 3-S-cysteinylhexan-1-ol and 3-S-glutathionylhexan-1-ol. Journal of agricultural and food chemistry, 58(3), 1390-1395.
Peña-Gallego, A., Hernández-Orte, P., Cacho, J., & Ferreira, V. (2012). S-Cysteinylated and S-glutathionylated thiol precursors in grapes. A review. Food Chemistry, 131(1), 1-13.
Swiegers, J. H., & Pretorius, I. S. (2007). Modulation of volatile sulfur compounds by wine yeast. Applied Microbiology and Biotechnology, 74(5), 954-960.
Günata, Z., Dugelay, I., Sapis, J. C., Baumes, R., & Bayonove, C. (1993). Role of enzymes in the use of the flavour potential from grape glycosides in winemaking. Progress in flavour precursor studies, 3, 219-234.
Aryan, A. P., Wilson, B., Strauss, C. R., & Williams, P. J. (1987). The properties of glycosidases of Vitis vinifera and a comparison of their β-glucosidase activity with that of exogenous enzymes. An assessment of possible applications in enology. American Journal of Enology and Viticulture, 38(3), 182-188.
Delcroix, A., Günata, Z., Sapis, J. C., Salmon, J. M., & Bayonove, C. (1994). Glycosidase activities of three enological yeast strains during winemaking: effect on the terpenol content of Muscat wine. American Journal of Enology and Viticulture, 45(3), 291-296.