OPTIMIZATION OF THE BREWING PROCESS USING SCENARIO APPROACH UNDER SITUATIONAL UNCERTAINTIES

Authors

  • M. С. Романов
  • В. Д. Кишенько
  • A. П. Ладанюк

DOI:

https://doi.org/10.15673/2073-8684.28/2014.29611

Keywords:

optimization of beer production, the scenario approach, situational change, identification, intelligent system.

Abstract

Paper considers the question of  optimization of basic technological processes of beer production.

The scenario approach can adequately formulate the opinions of experts and to use the results of experimental research to predict the attractive behavior of course of events in complex systems by means of multivariate analysis of situational control object. Each scenario connects the change of external conditions with parameters. Management scenarios are defined as а sequence of transitions by fuzzy logic rules between situationally-significant areas presented a set of models that assess the situation at the site. The problem of optimization of  technological processes of beer production was solved in the framework of the scenario approach, subject to situational changing the priority criteria and restrictions that have linguistic assessment. According to a survey of experts and processing of experimental data identified on static models for each selected fragment control script. Using this knowledge developed intelligent control system of beer production processes based on the principles of situational analysis of the behavior of the control object. The analysis of the results makes it possible to develop such control algorithms that would give such an opportunity to improve technical and economic indicators such as product quality, raw material costs and productivity and technological complex.

References

Domarets'kiy, V.A.,. Pribil's'kiy, V.L., Mikhaylov, M.G. (2005). Tekhnologíya yekstraktív,kontsentratív ta napoí̈v íz roslinnoí̈ sirovini: pídruchnik. – K.: Nova Kniga,. – 408 s.

Melet'êv, A. Ê, Todosíychuk, S. R., Koshova, V. M. (2007). Tekhnokhímíchniy kontrol' virobnitstva solodu, piva í bezalkogol'nikh napoí̈v.– K.: Nova kniga,. - 385 s.

Diligenskiy, N.V., Dymova, L.G., Sevast'yanov, P.V. (2004). Nechetkoye modelirovaniye i mnogokriterial'naya optimizatsiya proizvodstvennykh sistem v usloviyakh neopredelennosti: tekhnologiya, ekonomika, ekologiya: Monografiya– M.: Mashinostroyeniye-1,. – 336 s.

Trelea, I.C., Titica, M., Landau, S., Latrille, E., Corrieu G., Cheruy, A. (2001). A predictive modelling of brewing fermentation: from knowledge-based to black-box models. Mathematics and Computers in Simulation, 56. R. 405-424.

Novosel'tsev, V.I., Tarasov, B.V., Golikov, V.K., Demin, B.Ye. (2006). Teoreticheskiye osnovy sistemnogo analiza,– M.: Mayor. – 592 s.:il.

Khoroshevskiy, V. F. (2008). Prostranstva znaniy v seti Internet i Semantic Web (Chast' 1) Iskusstvennyy intellekt i prinyatiye resheniy. – №1. – S. 80-97.

Golenkov, V.V. (2001). Predstavleniye i obrabotka znaniy v grafodinamicheskikh assotsiativnykh mashinakh / Minsk: BGUIR,

Boyko, N.P., Petrunya, V.I., Telis, P.I. (1982). Sostoyaniye i perspektivy avtomatizatsii pivovarennoy promyshlennosti / TSNIITEI PISHCHEPROM. Seriya 10: Pivovarennaya i bezalkogol'naya promyshlennost'. Obzornaya informatsiya. – №6. – S. 1-32.

Telis, P.I. (1969). Issledovaniye osakharivatelya dlya nepreryvnogo zatiraniya v pivovarennom proizvodstve kak ob"yekta avtomatizatsii: Avtoref. dis. k.t.n. / Kiyevskiy tekhnologicheskiy institut pishchevoy promyshlennosti. – K. – 26 s.

Fedotkin, I.M. (1988). Matematicheskoye modelirovaniye tekhnologicheskikh protsessov. – K.: Vishcha shkola, – 415 s.

Antoniadis, A., Oppenheim, G. (1995). Wavelets and statistics // Lecture Notes in Statistics. –№ 103

Jang J.-S. R. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System.– IEEE Trans. Systems & Cybernetics. – Vol. 23. – P. 665 – 685 s.

ANDERSON, R.C., M. BARNETT, R. JAISINGHANI: Rule-driven optimization boosts plant performance / [Yelektronniy resurs]. – Rezhim dostupu: http: // www.gensym.com/ documents/HP_1005.pdf

Andrés, Toro, B. De, Girón-Sierra, J.M., López Orozco, J.A., Peinado, J.M., García Ochoa, F., (1998). A kinetic model for beer fermentation under industrial operational conditions. Mathematics and Computer Simulation, 48:65-74.

B. de Andres-Toro, Lopez-Orozco, J.A., Fernandez-Conde, C. (1997). Optimization of batch fermentation process by genetic algorithms.– Departament de Informatica y Automatica. –Uneversidad Complutense de Madrid. Madrid, Spain.

Carrillo-Ureta, G.E., Roberts, P.D., Becerra, V.M. (2001). Genetic Algorithms for Optimal Control of Beer Fermentation.– Proceedings of the IEEE International Symposium on Intelligent Control, Mexico City, Mexico, p.391-396.

Published

2014-11-08

Issue

Section

Процеси, обладнання, автоматизація, управління і економика