Analysis of stress-strain state of Caucasus region (Azerbaijan) on the basis of maximum horizontal stress vectors and "World Stress Map" application technique


  • G.P. Babayev Institute of Geology and Geophysics of the National Academy of Sciences of Azerbaijan, Azerbaijan
  • E.V. Akhmedova Baku State University, Azerbaijan
  • F.A. Kadirov Institute of Geology and Geophysics of the National Academy of Sciences of Azerbaijan, Azerbaijan



topographic anomalies, Greater and Lesser Caucasus, mechanisms of formation of earthquakes foci, stress-strain state, vectors of maximal horizontal strains, World Stress Map


The influence of topographic anomaly of the relief on the stress-strain state of the Caucasus lithosphere (Azerbaijan) and plotting the respective models have been considered in the paper. Stress-strain state was studied by the finite element method with the application of software packages Hypermesh™ and AbaqusTM. Based on the plotted models of stress-strain state of lithosphere, the orientations and localization of the horizontal stress axes at the various lithosphere depths were determined. The correlation of those stress axes was done with the stress map plotted on the basis of focal mechanism solutions of the earthquake occurred in Azerbaijan within the period of 1990—2015 years with the application of CASMO ("World Stress Map") technique. Mainly western and central parts of Greater Caucasus ridge are characterized by northeastern—southwestern tension. In the eastern part, the tension reverses into intensive compression. In the studied region, earthquakes are predominantly thrust-faulting with a number of normal-faulting and some strike-slip faulting. The consideration of the topographic anomalies at analysis of stress-strain state at the various lithosphere depth levels will allow obtaining more reliable data for the plotting of geodynamic model of the region. Such researches are necessary to be conducted at the construction of the strategic facilities, especially underground constructions (mines, tunnels, underground pipelines, terminals) since it is important to consider as many factors as possible affecting the formation of the stress-strain state of the Earth's crust.


Akhmedbeyli F. S., Mamedov A. V., Shirinov N. Sh., Shikhalibeyli E. Sh., 1991. Neotectonic Map of Azerbaijan. 1 : 500 000. Baku: Bakinskaya kartfabrika (in Russian).

Belyakov N. A., 2010. Geomechanical substantiation of the parameters of fastening of railway tunnels in the conditions of the North Caucasus. Zapiski Gornogo instituta 186, 99—103 (in Russian).

Kadirov F. A., Gadirov A. G., Babayev G. R., Agayeva S. T., Mamedov S. K., Garagezova N. R., Safarov R. T., 2013. Seismic zoning of the southern slope of Greater Caucasus from the fractal parameters of the earthquakes, stress state and GPS velocities. Izvestiya. Phisics of the Solid Earth 49(4), 554—562 (in Russian). doi: 10.1134/S1069351313040046.

Koptev A., Yershov A., 2011. Numerical modeling of the thermal state of the lithosphere, distribution of intraplate stresses in the lithospheric folds of the Black Sea-Caucasian-Caspian region. Byulleten Moskovskogo obshchestva ispytateley prirody. Otd. geologii 86(is. 5), 3—11 (in Russian).

Liliyenberg D. A., 1980. Experience of complex mapping of modern geodynamics (on the example of the Azerbaijan SSR). In: Modern movements of the Earth's crust. Theory, methods, forecast. Moscow: Nauka, P. 65—76 (in Russian).

Liliyenberg D. A., Guseynzade O. D., Kuliyev F. T., Shirinov N. Sh., Yashchenko V. R., 1980. Complex studies of modern tectonic movements on geological polygons of Azerbaijan. In: Modern movements of the Earth's crust. Theory, methods, forecast. Moscow: Nauka, P. 165—174 (in Russian).

Protosenya A. G., Belyakov N. A., 2011. Determination of the stress-strain state of the temporary support of the railway tunnel taking into account the influence of the relief of the Earth's surface. Izvestiya TklGU. Nauki o Zemle (is. 1), 158—166 (in Russian).

Rebetskiy Yu. L., 2007. New data on natural stresses in the field of preparation of a strong earthquake. Model of the source of the earthquake. Geofozicheskiy zhurnal 29(6), 92—110 (in Russian).

Rebetskiy Yu. L., Kuchay O. A., Marinin A. V., 2013. Stress state and deformation of the Earth's crust

of the Altai-Sayan mountain region. Geologiya i geofizika 54(2), 271—291 (in Russian).

Shengelaya G., 1984. Gravitational model of Earth's crust of Caucasus. Moscow: Nauka, 128 p. (in Russian).

Yashchenko V. R., 1989. Geodesic investigations of vertical movements of the Earth's crust. Moscow: Nedra, 192 p. (in Russian).

Agayeva S., 2006. Stress state of the Earth's crust in Azerbaijan. Recent geodynamics, georisk and sustainable development in the Black Sea to Caspian Sea region: Conference proceedings of American Institute of Physics, Melville, New-York, USA. Vol. 825, P. 97—102.

Agayeva S. T., Babayev G. R., 2009. Analysis of earthquake focal mechanisms for Greater and Lesser Caucasus applying the method of World Stress Map. Azerbaijan National Academy of Sciences. In: Proceedings of Geology Institute. Baku: Nafta-Press, № 2, P. 40—44.

Alizadeh A. A., Guliyev I. S., Kadirov F. A., Eppelbaum L. V., 2016. Geosciences of Azerbaijan. Vol. I: Geology. Springer Int. Publ. 340 p. doi: 10.1007/ 978-3-319-27395-2.239.

Babayev G. R., 2009. Analysis of earthquake focal mechanisms for Greater and Lesser Caucasus applying the method of World Stress Map, Azerbaijan National Academy of Science. Catalogue of Azerbaijan Republican Seismological Center, P. 67— 74.

Bada G., Horvath F., Cloetingh S., Coblentz D. D., Tуth T., 2001. Role of topography-induced gravitational stresses in basin inversion: The case study of the Pannonian basin. Tectonics 20, 343—363.

Bada G., Horvath F., Tуth L., Fodor L., Timar G., Cloetingh S., 2005. Societal aspects of ongoing deformation in the Pannonian region. In: N. Pinter, Gy. Grenerczy, J. Weber, S. Stein, D. Medak (Eds). The Adria Microplate: GPS Geodesy, Tectonics, and Hazards. NATO ARW Series. Vol. 61. Kluwer Academic Publishers, P. 385—402.

Ismail-Zadeh A., Muller B., Schubert G., 2005. Three- dimensional numerical modeling of contemporary mantle flow and tectonic stress beneath the earthquake-prone southeastern Carpathians based on integrated analysis of seismic, heat flow and gravity data. Phys. Earth. Planet. Int. 149(1), 81—98. doi: 10.1016/j.pepi.2004.08.012.

Fleitout L., Froidevaux C., 1982. Tectonics and topography for a lithosphere containing density heterogeneities. Tectonics 1, 21—56.

Hashimoto M., 1982. Numerical Modeling of the Three- dimensional Stress Field in Southwestern Japan. Tectonophysics 84, 247—266.

Heidbach O., Barth A., Connolly P., Fuchs K., Muller B., Reinecker J., Sperner B., Tingay M., Wenzel F., 2004. Stress Maps in a Minute: The 2004 World Stress Map Release. Eos Trans. 85, 521—529.

Heidbach O., Tingay M., Barth A., Reinecker J., Kurfeß D., Müller B., 2008. The World Stress Map database release. doi:10.1594/GFZ.WSM.Rel2008.

Kadirov A. G., Agayeva S. T., Aliyev F. A., Mamedov S. K., Babayev G. R., Kadirov F. A., 2009. Monitoring and seismicity of collision zone of Azerbaijan part of Greater Caucasus. Azerbaijan National Academy of Sciences: Proceedings of Geology Institute. Baku: Nafta-Press, № 3, P. 25—37.

Kadirov F., 2004. Gravity Model of Lithosphere in the Caucasus-Caspian Region. In: South Caspian Basin: geology, geophysics, oil and gas content. Baku: Nafta Press, P. 107—123.

Kadirov F. A., Floyd M. A., Alizadeh A., Guliev I., Reilinger R. E., Kuleli S., King R. W., Toksoz M. N., 2012. Kinematics of the Caucasus near Baku, Azerbaijan. Nat. Hazards 63, 997—1006. doi: 10.1007/s11069-012-0199-0.

Kadirov F. A., Floyd M., Reilinger R., Alizadeh Ak. A., Guliyev I. S., Mammadov S. G., Safarov R. T., 2015. Active geodynamics of the Caucasus region: implications for earthquake hazards in Azerbaijan: Proceedings of the Geology and Geophysics Institute, № 3, P. 3—17.

Kadirov F., Mammadov S., Reilinger R., McClusky S., 2008. Some new data on modern tectonic deformation and active faulting in Azerbaijan (according to Global Positioning System measurements): Proceedings Azerbaijan National Academy of Sciences. Vol. 1. P. 82—88.

Kreemer C., Blewitt G., Klein E., 2014. A geodetic plate motion and Global Strain Rate Model. Geochem.

Geophys. Geosyst. 15, 3849—3889. doi: 10.1002/2014GC005407.

Lanbo L., Zoback M., 1992. The effect of topography on the state of stress in the Crust: Application to the site of the Cajon Pass scientific drilling project. J. Geophys. Res. 97(B4), 5095—5108.

McKenzie D. P., 1972. Active tectonics of the Mediterranean region. Geophys. J. Roy. Asron. Soc. 30, 239—243.

Molnar P., Lyon-Caen H., 1988. Some simple physical aspects of the support, structure, and evolution of mountain belts. Geol. Soc. Amer. Spec. Paper 218, 179—207.

National Geophysical Data Center, 1988. ETOPO5 bathymetry and topography data. Data Announce. 88-MGG-02. NOAA. Boulder. Colorado.

Nemcok M., Feyzullayev A., Kadirov A., Zeynalov G., Allen R., Christensen C., Welker B., 2011. Neotectonics of the Caucasus and Kura valley, Azerbaijan. Global Engineers & Technologist Review 1 (1), 1—14.

Nilforoushan F., Masson F., Vernant P., Vigny C., Martinod J., Abbassi M., Nankali H., Hatzfeld D., Bayer R., Tavakoli F., Ashtiani A., Doerflinger E., Daignieres M., Collard P., Chery J., 2003. GPS network monitors the Arabia-Eurasia collision deformation in Iran. J. Geod. 77, 411—422. doi: 10. 1007/s00190-003-0326-5.

Philip H., Cisternas A., Gvishiani A., Gorshkov A., 1989. The Caucasus: An actual example of the initial stages of continental collision. Tectonophysics 161, 1—21.

Randolph M., Krasovec M. L., Romer S., Toksoz M. N., Kuleli S., Gulen L., Vergino E. S., 2015. The Caucasus seismic information network study and its extension into Central Asia. 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies. P. 71—78.

Reilinger R., McClusky S., Vernant P., Lawrence Sh. et al., 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. 111 (B5), B05411. doi: 10.1029/2005JB004051.

Ruppel C., McNutt M., 1990. Regional compensation of the Greater Caucasus mountains based on an analysis of Bouguer gravity data. Earth Planet. Sci. Lett. 98, 360—379.

Sengor A. M. C., Gorur N., Saroglu F., 1985. Strike slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, in: Strike slip Faulting and Basin Formation. Soc. Econ. Paleont. Min. Spec. Publ. 37, 227—264.

TelescaL., Lovallo M., Babayev G., Kadirov F., 2013. Spectral and informational analysis of seismicity: an application to the 1996—2012 seismicity of Northern Caucasus-Azerbaijan part of Greater Caucasus-Kopet Dag Region. Physica A: Statistical Mechanics and its Applications 392(23), 6064—6078. doi:10.1016/j.physa.2013.07.031.

Yamasaki T., Seno T., 2005. High strain rate zone in central Honshu resulting from the viscosity heterogeneities in the crust and mantle. Earth Planet. Sci. Lett. 232, 13—27. doi: 10.1016/j.epsl.2005.01.015.

Yetirmishli G. J., Mammadli T. Y., Kazimova S. E., 2013. Features of seismicity of Azerbaijan part of the Greater Caucasus. Journal of Georgian Geophysical Society, Issue (A), Physics of Solid Earth 16a, 55—60.

Zoback M., 1992. First and second order patterns of tectonic stress: The World Stress Map Project. J. Geophys. Res. 97, 11703—11728.

Zoback M., Mooney W., 2003. Lithospheric Buoyancy and Continental Intraplate Stresses. Int. Geol. Rev. 45, 95—118.



How to Cite

Babayev, G., Akhmedova, E., & Kadirov, F. (2017). Analysis of stress-strain state of Caucasus region (Azerbaijan) on the basis of maximum horizontal stress vectors and "World Stress Map" application technique. Geofizicheskiy Zhurnal, 39(3), 26–39.