Representation of potentials from point sources for a homogeneous isotropic medium in the form of Bessel-Mellin integrals
DOI:
https://doi.org/10.24028/gzh.0203-3100.v35i2.2013.111361Abstract
A method for derivation of formulas for representation of potentials of wave fields of different types as integrals Bessel—Mellin is offered. Considered potentials are formed by point sources of type of force or the moment of forces in homogeneous isotropic unbounded medium.
References
Аки К., Ричардс П. Количественная сейсмология. — Москва: Мир, 1983. — Т. 1. — 519 с.
Лебедев Н. Н. Специальные функции и их приложения (2е изд.). — Москва—Ленинград: Физ матгиз, 1963. — 359 с.
Пак Р. М. Хвильове поле в однорідному середовищі для джерела у вигляді одинарної сили або подвійної пари сил // Геоінформатика. — 2004. — № 1. — С. 36—44.
Hasskell N. A. The dispersion of surface waves on multilayered media // Bull. Seismol. Soc. Amer. — 1953. — 43, № 1. — P. 17—34.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).