Numerical homogenization of multi-scale heterogeneous media
DOI:
https://doi.org/10.24028/gzh.0203-3100.v34i4.2012.116746Abstract
A problem of electrical potential distribution in media, containing micro-inclusions with highly contrasting physical properties and different geometric shapes, was considered. Multiscale finite element method has been chosen as a solver. A procedure of homogenization of electrical resistivity of heterogeneous media was held, using the solution of original task. The results of numerical modeling were compared with the results of physical experiment.References
Бородай В. Э., Галанин М. П., Лазарева С. А., Паршенцев В. А., Шипилов В. А. Применение метода конечных суперэлементов для расчета распределений электрического потенциала и плотности тока в проводящих объектах. - Москва, 2008. - 26 с. - (Препр. / ИПМ РАН; № 17).
Жуков В. Т., Новикова Н. Д., Страховская Л. Г., Федоренко Р. П., Феодоритова О. Б. Метод конечных суперэлементов в задачах конвек ции-диффузии // Матем. моделирование. - 2002. - 14, №11. - С. 78-92.
Мысовских И. П. Интерполяционные кубатурные формулы. - Москва: Наука, 1981. - 336 с.
Страховская Л. Г., Федоренко Р. П. Об од ной специальной разностной схеме // Численные методы механики сплошной среды. - 1976. - 7, № 4. - С. 149-163.
Эпов М. И., Шурина Э. П., Артемьев М. К. Численная гомогенизация электрических характеристик сред с контрастными мелкомасштабными включениями // Докл. РАН. - 2012. - 442, № 1. - С. 188-120.
Abdulle A. The Finite Element Heterogeneous Multiscale Method: a computational strategy for multiscale PDEs // Math. Sci. Appl. - 2009. - 31. - P. 133-181.
Allaire G., Brizzi R. A multiscale finite element method for numerical homogenization // SIAM MMS. - 2005. - 4. - Р. 790-812.
Chu C.-C., Graham I. G., Hou T. Y. A New Multiscale Finite Element Method for High-Contrast Elliptic Interface Problems // Math. Comput. - 2010. - 79, № 272. - P. 1915-1955.
E W., Engquist B. The heterogeneous multiscale methods // Comm. Math. Sci. - 2003. - 1, № 1. - P. 87-132.
Efendiev Y. R., Hou T. Y. Multiscale finite element methods: Theory and applications. - New York: Springer, 2009. - Р. 234.
Hou T. Y., Wu X.-H. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media // J. Comput. Phys. - 1997. - 134. - Р. 169-189.
Hou T. Y., Wu X.-H., Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients // Math. Comput. - 1999. - 68, № 227. - P. 913-943.
Zhang H. W., Wu J. K., Lv J. A new multiscale computational method for elasto-plastic analysis of heterogeneous materials // Comput. Mech. - 2011. - 49, № 2. - P. 149-169.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).