Three-dimensional deep geoelectric model of the Tarasivka structure of the Golovanivsk suture zone
DOI:
https://doi.org/10.24028/gzh.0203-3100.v40i2.2018.128934Keywords:
Golovanivsky suture zone, 3D geoelectric model, MT/MV methods, electrical conductivity anomaliesAbstract
In 2017 the field simultaneous areal measurements of the external low-frequency natural electromagnetic field of the Earth and the construction of a three-dimensional deep resistivity distribution in the crust of the Tarasivka structure (48032' N, 30037' E) were performed in the central part of the Yatran Block of the Golovanivsk suture zone. The analysis of experimental data (the curves of deep magnetotelluric sounding for a period of 10—10000 s and the complex induction parameters for periods of 20—6900 s) indicates a complex three-dimensional situation, which involves the presence of a nearsurface and possibly deep conductivity anomalies. According to the results of three-dimensional modeling, the Tarasivka structure is fragmentarily manifested as a low resistivity, the conductive zones with different resistivity cross it in a sublatitudinal direction, in which the lowest values from 10 Ohm·m in the south to 100 Ohm·m in the north are in its contour. In the vertical section it can be represented in as several layers: the first one is the conductor with ρ=10ч250 Ohm·m — from the surface to 10 m (south of 48030ў) to 100 m (north of 48030ў), most likely linked not only with high electrical conductivity of surface sediment deposits, but also with the zones of disintegration of rocks of the basement; the second one is a high resistivity layer with ρ=10000 Ohm·m — from 100 m to 2 km, possibly it is represented by the uniform non-differentiated thickness; the third layer is the electrical conductor with ρ=10ч250 Ohm∙m from 2—3 km to 10 km, probably linked with the special composition of the earth’s crust at these depths (graphitization, sulfidization, etc.) or fluidization of different origins, more often it is considered according to the modern data that the nature of the conductive anomalies is the result of the joint influence of the electron and ion types of electrical conductivity.
References
Burakhovych T. K., Haniyev O. Z., Shyrkov B. I., 2015. Modeling of the deep structure of Golovan’s seam zone according to geoelectric data. Visnyk Kyyivskoho natsionalnoho universtetu imeni Tarasa Shevchenka. Heolohiya (2), 52—59 (in Ukrainian).
Burakhovich T. K., Nikolayev I. Yu., Sheremet Ye. M., Shirkov B. I., 2015a. Geoelectric anomalies of the Ukrainian shield and their relation to mineral deposits. Geofizicheskiy zhurnal 37(6), 42—63 (in Russian). doi: https://doi.org/10.24028/gzh.0203-3100.v37i6.2015.111171.
Burakhovich T. K., Sheremet Ye. M., Nikolaev I. Yu., Shirkov B. I., 2015a. Possibilities of MT/MB studies for forecasting mineral deposits on the Ukrainian Shield. XIV th EAGE Int. Conf. on Geoinformatics — Theoretical and Applied Aspects, 11—14 May 2015. Kyiv, 2015b. 4 p. (in Russian). doi: 10.3997/2214-4609.20141235.
Burachovich T. K., Shyrkov B. I., 2015. Depth geoelectric study of the Golovanivsk suture zone. Geoinformatika (1), 61—69 (in Ukrainian).
Varentsov I. M., 2013. Software system prc_mtmv for data processing of synchronous MT/MV probing. Materials of the VI All-Russian School of Seminar on EM Sounding on behalf of M. N. Berdichevskiy and L. L. Vanyan. Novosibirsk: INGG SB RAS, P. 1—4 (in Russian).
Gintov O. B., Entin V. A., Mychak S. V., Pavlyuk V. N., Zyultsle V. V., 2016. Structural-petrophysical and tectonophysical base of geological map of crystalline basement of the central part of Golovanevsk suture zone of the Ukrainian Shield. Geofizicheskiy zhurnal 38(3), 3—28 (in Russian). doi: https://doi.org/10.24028/gzh.0203-3100.v38i3.2016.107777.
Geological and geophysical model of the Golovanevsk suture zone of the Ukrainian shield. Ed. A. V. Antsiferov. Donetsk: Veber, 2008. 305 p. (in Russian).
Ingerov A. I., Bugrimov L. P., Koldunov A. A., Popov V. M., Rokityanskiy I. I., Dzyuba K. I., Lysenko E. S., Rokityanskaya D. A., 1988a. The MTZ results for site of Kiliya—Krivoy Rog. In: Lithosphere of Central and Eastern Europe. Geotraverses IV, VI, VIII. Kiev: Naukova Dumka, P. 145—149 (in Russian).
Ingerov A. I., Popov V. M., Rokityanskiy I. I., Lysenko E. S., Rokityanskaya D. A., Shuman V. N., 1988b. Geoelectric section of the Vinnytsia-Evpatoria plot. In: Lithosphere of Central and Eastern Europe. Geotraverses IV, VI, VIII. Kiev: Naukova Dumka, P. 106—111 (in Russian).
Kulik S. N., Logvinov I. M., Burakhovich T. K., 1989. Geoelectric researches in Ukraine. In: Tectonosphere of Ukraine. Kiev: The Naukova Dumka, P. 58—63 (in Russian).
Nikolaev I. Yu., Sheremet Ye. M., Burakhovich T. K., Krivdik S. G., Kalashnik A. A., Nikolaev Yu. I., Setaya L. D., Agarkova N. G., 2014. The Ingulsky megablock of the Ukrainian shield (deep geoelectric model and minerals). Donetsk: Noulidzh, 180 с. (in Russian).
Shyrkov B. I., Burachovich T. K., 2017. Electromagnetic methods at prediction of mineral manifestations of minerals. Visnyk Kyyivskoho natsionalnoho universtetu imeni Tarasa Shevchenka. Heolohiya (4), 52—59 (in Ukrainian). С. 40—45.
Shirkov B. I., Burakhovich T. K., Kushnir A. N., 2017. Three-dimensional geoelectric model of the Golovanevsk suture zones of the Ukrainian Shield. Geofizicheskiy zhurnal 39(1), 41—58 (in Russian). doi: https://doi.org/10.24028/gzh.0203-3100.v39i1.2017.94010.
Shuman V. N., Savin M. G., 2011. Mathematical models of geoelectrics. Kiev: Naukova Dumka, 226 p. (in Russian).
Birt C. S., Maguire P. K. H., Khan M. A., Thybo H., Keller R. K., Patel J., 1997. The influence of preexisting structures on the evolution of the southern Kenya Rift Valley: Evidence from seismic and gravity studies. Tectonophysics 278(1-4), 211—242.
Brasse H., Lezaeta P., Rath V., Schwalnberg K., Soyer W., Haak V., 2002. The Bolivian Altiplano conductivity anomaly. J. Geophys. Res. 107(B5), EPM 4-1—EPM 4-14. doi: 10.1029/2001JB000391.
Burakhovych T. K., Shyrkov B. I., 2012. Three-dimensional geoelectric model of the Earth’s crust of Кirovograd ore region of the Ukrainian Shield. Tез. докл: XI Междунар. конф. «Геоинформатика: теоретические и прикладные аспекты», 14—17 мая 2012 г. Киев: ВАГ, 2012. С. 25—53. CD-ROM.
Fon L. T., 2011. Magnetotellurics and Geomagnetic Depth Sounding in Queensland, South Eastern Australia — Evidence for the Tasman Line? Doctoral thesis. http://hdl.handle.net/11858/00-1735-0000-0006-B538-D.
Ingerov A. I., Rokityansky I. I., Tregubenko V. I., 1999. Forty years of MTS studies in the Ukraine. Earth Planets Space 51, 1127—1133. https://doi.org/10.1186/BF03351586.
Jones A. G., Snyder D., Spratt J., 2001. Magnetotelluric and teleseismic experiments as part of the Walmsley Lake project, Northwest Territories experimental designs and prelimenary result. Geol. Surv. Can. Curr. Res. C 6, 1—10.
Khoza T. D., Jones A. G., Muller M. R., Evans R. L., Miensopust M. P., Webb S. J., 2013a. Lithospheric structure of an Archean craton and adjacent mobile belt revealed from 2-D and 3-D inversion of magnetotelluric data: Example from southern Congo craton in northern Namibia. J. Geophys. Res. Solid Earth. 118(8), 4378—4397. doi:10.1002/jgrb.50258.
Khoza T. D., Jones A. G., Muller M. R., Evans R. L., Webb S. J., Miensopust M., the SAMTEX team, 2013б. Tectonic model of the Limpopo belt: Constraints from magnetotelluric data. Precambrian Res. 226, 143—156. http://dx.doi.org/10.1016/j.precamres.2012.11.016.
Lilley F. E. M., Wang L. J., Chamalaun F. H., Ferguson I. J., 2001. The Carpentaria electrical conductivity anomaly, Queensland, as a major structure in the Australian Plate. GSAA Monograph 201, 1—16.
Mackie R. L., Booker J., 1999. Documentation for mtd3fwd and d3-to-mt. GSY-USA Inc., 2261 Market St., Suite 643, San Francisco, CA 94114.
Spratt J. E., Jones A. G., Jackson V. A., Collins L., Avdeeva A., 2009. Lithospheric geometry of the Wopmay orogen from Slave craton to Bear Province magnetotelluric transect. J. Geophys. Res. 114, B0110. doi:10.1029/2007JB005326.
Wannamaker P., 2005. Anisotropy versus heterogeneity in continental solid Earth electromagnetic studies: fundamental response characteristics and implications for physicochemical state. Surv. Geophys. 26(6), 733—765. doi: 10.1007/s10712-005-1832-1.
Wannamaker P., Jiracek G. R., Stodt J. A., Caldwell T. G., Gonzalez V. M., McKnight J. D., Porter A. D., 2001. Fluid generation and movement beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data. J. Geophys. Res. 107, B6. doi: 10.1029/2001JB000186.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).