Тривимірна глибинна геоелектріческіх модель Тарасівської структури Голованівської шовної зони

Автор(и)

  • T. K. Burakhovich Інститут геофізики ім. С.І.Субботіна Національної академії наук України, Україна
  • V. A. Ilyenko Інститут геофізики ім. С.І.Субботіна Національної академії наук України, Україна
  • A. M. Kushnir Інститут геофізики ім. С.І.Субботіна Національної академії наук України, Україна
  • B. I. Shirkov Інститут геофізики ім. С.І.Субботіна Національної академії наук України, Україна

DOI:

https://doi.org/10.24028/gzh.0203-3100.v40i2.2018.128934

Ключові слова:

Golovanivsky suture zone, 3D geoelectric model, MT/MV methods, electrical conductivity anomalies

Анотація

У 2017 року в центральній частині Ятранського блоку Голованівської шовної зони виконані майданні синхронні вимірювання зовнішнього змінного низькочастотного природного електромагнітного поля Землі і побудова тривимірного глибинного розподілу питомого опору в земній корі Тарасівській структури (48 ° 32 'пн, 30 ° 37' в . Д.). Аналіз експериментальних даних (криві глибинного магнітотелуричного зондування для діапазону періодів 10-10000 з і комплексні індукційні параметри для періодів 20-6900 с) свідчить про складну тривимірної ситуації, яка передбачає наявність поверхневої і, можливо, глибинної електропровідний аномалії. За результатами тривимірного моделювання Тарасівська структура фрагментарно проявляється в низькому електричному опорі ρ, її субширотно перетинають електропровідні зони з різним ρ, в яких саме низькі значення від 10 Ом · м на півдні до 100 Ом · м на півночі знаходяться в її контурі. У вертикальному розрізі структуру можна представити у вигляді декількох шарів: перший - електропровідний з ρ = 10 ÷ 250 Ом · м - з поверхні до 10 м (на північ від 48'30 °) і 100 м (на південь від 48 ° 30 '), швидше за все, пов'язаний не тільки з високою електропровідністю поверхневих осадових відкладень, а й із зоною дезінтеграції порід кристалічного фундаменту; другий - високого опору з ρ = 10 000 Ом · м - з 100 м до 2 км може бути представлений однорідної недифференцированностью товщею; третій - електропровідний з ρ = 10 ÷ 250 Ом · м з 2-3 км до 10 км, ймовірно, може пояснюватися особливим складом порід земної кори на цих глибинах (графітизацією, сульфідізаціей і т. д.) або флюїдизації різного походження. Все частіше за останніми даними природу аномалій розглядають як результат спільного Вляна електронного та іонного типів електропровідності.

Посилання

Burakhovych T. K., Haniyev O. Z., Shyrkov B. I., 2015. Modeling of the deep structure of Golovan’s seam zone according to geoelectric data. Visnyk Kyyivskoho natsionalnoho universtetu imeni Tarasa Shevchenka. Heolohiya (2), 52—59 (in Ukrainian).

Burakhovich T. K., Nikolayev I. Yu., Sheremet Ye. M., Shirkov B. I., 2015a. Geoelectric anomalies of the Ukrainian shield and their relation to mineral deposits. Geofizicheskiy zhurnal 37(6), 42—63 (in Russian). doi: https://doi.org/10.24028/gzh.0203-3100.v37i6.2015.111171.

Burakhovich T. K., Sheremet Ye. M., Nikolaev I. Yu., Shirkov B. I., 2015a. Possibilities of MT/MB studies for forecasting mineral deposits on the Ukrainian Shield. XIV th EAGE Int. Conf. on Geoinformatics — Theoretical and Applied Aspects, 11—14 May 2015. Kyiv, 2015b. 4 p. (in Russian). doi: 10.3997/2214-4609.20141235.

Burachovich T. K., Shyrkov B. I., 2015. Depth geoelectric study of the Golovanivsk suture zone. Geoinformatika (1), 61—69 (in Ukrainian).

Varentsov I. M., 2013. Software system prc_mtmv for data processing of synchronous MT/MV probing. Materials of the VI All-Russian School of Seminar on EM Sounding on behalf of M. N. Berdichevskiy and L. L. Vanyan. Novosibirsk: INGG SB RAS, P. 1—4 (in Russian).

Gintov O. B., Entin V. A., Mychak S. V., Pavlyuk V. N., Zyultsle V. V., 2016. Structural-petrophysical and tectonophysical base of geological map of crystalline basement of the central part of Golovanevsk suture zone of the Ukrainian Shield. Geofizicheskiy zhurnal 38(3), 3—28 (in Russian). doi: https://doi.org/10.24028/gzh.0203-3100.v38i3.2016.107777.

Geological and geophysical model of the Golovanevsk suture zone of the Ukrainian shield. Ed. A. V. Antsiferov. Donetsk: Veber, 2008. 305 p. (in Russian).

Ingerov A. I., Bugrimov L. P., Koldunov A. A., Popov V. M., Rokityanskiy I. I., Dzyuba K. I., Lysenko E. S., Rokityanskaya D. A., 1988a. The MTZ results for site of Kiliya—Krivoy Rog. In: Lithosphere of Central and Eastern Europe. Geotraverses IV, VI, VIII. Kiev: Naukova Dumka, P. 145—149 (in Russian).

Ingerov A. I., Popov V. M., Rokityanskiy I. I., Lysenko E. S., Rokityanskaya D. A., Shuman V. N., 1988b. Geoelectric section of the Vinnytsia-Evpatoria plot. In: Lithosphere of Central and Eastern Europe. Geotraverses IV, VI, VIII. Kiev: Naukova Dumka, P. 106—111 (in Russian).

Kulik S. N., Logvinov I. M., Burakhovich T. K., 1989. Geoelectric researches in Ukraine. In: Tectonosphere of Ukraine. Kiev: The Naukova Dumka, P. 58—63 (in Russian).

Nikolaev I. Yu., Sheremet Ye. M., Burakhovich T. K., Krivdik S. G., Kalashnik A. A., Nikolaev Yu. I., Setaya L. D., Agarkova N. G., 2014. The Ingulsky megablock of the Ukrainian shield (deep geoelectric model and minerals). Donetsk: Noulidzh, 180 с. (in Russian).

Shyrkov B. I., Burachovich T. K., 2017. Electromagnetic methods at prediction of mineral manifestations of minerals. Visnyk Kyyivskoho natsionalnoho universtetu imeni Tarasa Shevchenka. Heolohiya (4), 52—59 (in Ukrainian). С. 40—45.

Shirkov B. I., Burakhovich T. K., Kushnir A. N., 2017. Three-dimensional geoelectric model of the Golovanevsk suture zones of the Ukrainian Shield. Geofizicheskiy zhurnal 39(1), 41—58 (in Russian). doi: https://doi.org/10.24028/gzh.0203-3100.v39i1.2017.94010.

Shuman V. N., Savin M. G., 2011. Mathematical models of geoelectrics. Kiev: Naukova Dumka, 226 p. (in Russian).

Birt C. S., Maguire P. K. H., Khan M. A., Thybo H., Keller R. K., Patel J., 1997. The influence of preexisting structures on the evolution of the southern Kenya Rift Valley: Evidence from seismic and gravity studies. Tectonophysics 278(1-4), 211—242.

Brasse H., Lezaeta P., Rath V., Schwalnberg K., Soyer W., Haak V., 2002. The Bolivian Altiplano conductivity anomaly. J. Geophys. Res. 107(B5), EPM 4-1—EPM 4-14. doi: 10.1029/2001JB000391.

Burakhovych T. K., Shyrkov B. I., 2012. Three-dimensional geoelectric model of the Earth’s crust of Кirovograd ore region of the Ukrainian Shield. Tез. докл: XI Междунар. конф. «Геоинформатика: теоретические и прикладные аспекты», 14—17 мая 2012 г. Киев: ВАГ, 2012. С. 25—53. CD-ROM.

Fon L. T., 2011. Magnetotellurics and Geomagnetic Depth Sounding in Queensland, South Eastern Australia — Evidence for the Tasman Line? Doctoral thesis. http://hdl.handle.net/11858/00-1735-0000-0006-B538-D.

Ingerov A. I., Rokityansky I. I., Tregubenko V. I., 1999. Forty years of MTS studies in the Ukraine. Earth Planets Space 51, 1127—1133. https://doi.org/10.1186/BF03351586.

Jones A. G., Snyder D., Spratt J., 2001. Magnetotelluric and teleseismic experiments as part of the Walmsley Lake project, Northwest Territories experimental designs and prelimenary result. Geol. Surv. Can. Curr. Res. C 6, 1—10.

Khoza T. D., Jones A. G., Muller M. R., Evans R. L., Miensopust M. P., Webb S. J., 2013a. Lithospheric structure of an Archean craton and adjacent mobile belt revealed from 2-D and 3-D inversion of magnetotelluric data: Example from southern Congo craton in northern Namibia. J. Geophys. Res. Solid Earth. 118(8), 4378—4397. doi:10.1002/jgrb.50258.

Khoza T. D., Jones A. G., Muller M. R., Evans R. L., Webb S. J., Miensopust M., the SAMTEX team, 2013б. Tectonic model of the Limpopo belt: Constraints from magnetotelluric data. Precambrian Res. 226, 143—156. http://dx.doi.org/10.1016/j.precamres.2012.11.016.

Lilley F. E. M., Wang L. J., Chamalaun F. H., Ferguson I. J., 2001. The Carpentaria electrical conductivity anomaly, Queensland, as a major structure in the Australian Plate. GSAA Monograph 201, 1—16.

Mackie R. L., Booker J., 1999. Documentation for mtd3fwd and d3-to-mt. GSY-USA Inc., 2261 Market St., Suite 643, San Francisco, CA 94114.

Spratt J. E., Jones A. G., Jackson V. A., Collins L., Avdeeva A., 2009. Lithospheric geometry of the Wopmay orogen from Slave craton to Bear Province magnetotelluric transect. J. Geophys. Res. 114, B0110. doi:10.1029/2007JB005326.

Wannamaker P., 2005. Anisotropy versus heterogeneity in continental solid Earth electromagnetic studies: fundamental response characteristics and implications for physicochemical state. Surv. Geophys. 26(6), 733—765. doi: 10.1007/s10712-005-1832-1.

Wannamaker P., Jiracek G. R., Stodt J. A., Caldwell T. G., Gonzalez V. M., McKnight J. D., Porter A. D., 2001. Fluid generation and movement beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data. J. Geophys. Res. 107, B6. doi: 10.1029/2001JB000186.

##submission.downloads##

Опубліковано

2018-04-23

Як цитувати

Burakhovich, T. K., Ilyenko, V. A., Kushnir, A. M., & Shirkov, B. I. (2018). Тривимірна глибинна геоелектріческіх модель Тарасівської структури Голованівської шовної зони. Геофізичний журнал, 40(2), 108–122. https://doi.org/10.24028/gzh.0203-3100.v40i2.2018.128934

Номер

Розділ

Статті