Problems of Precambrian paleomagnetism on the territory of Ukraine
DOI:
https://doi.org/10.24028/gzh.0203-3100.v40i5.2018.147491Keywords:
paleomagnetism, Ukrainian Shield, Ingul megablock, Volyn traprocks, Vendian PodoliaAbstract
Some problems of paleomagnetic research of the Precambrian rocks of Ukraine are considered. The results of paleomagnetic researches of the Proterozoic rocks of the Ukrainian Shield, Ediacaran traps of Volyn and sedimentary rocks of Podolia were analyzed. With the emergence of many new isotopic age data for the Ukrainian Shield rocks we have new opportunities to get reliable palaeomagnetic poles. But our studies of the pilot collections of samples from some key outcrops in the Middle Dnieper, Azov, Dniester-Bug, Ingul and North-Western crustal blocks of the Ukrainian Shield with modern geochronological isotopic ages showed their absence of informativity for palaeo-magnetic determinations. On the Ukrainian Shield the gabbro-anorthosite and granite rapakivi of Korosten and Korsun-Novomyrhorod anorthosite-mangerite-charnockite-granite complexes in the northwestern and central part of the shield are good candidates for palaeomagnetic investigations. New paleomagnetic pole (Φ = 22.7°N, Λ = 164.3°E, dp/dm = 4.9°/9.6°) for ages of 1750 Ma were calculated for six sites within Ingul mega-block. Based on the analysis of paleomagnetic poles for Fennoscandia and the Ukrainian Shield the model of relative position and orientation of these blocks at 1770 and 1750 Ma were calculated. About 1770 Ma Fennoscandia and the Ukrainian Shield occupied low latitudinal positions (15° N and 2° S respectively). At the same time the Ukrainian Shield was rotated anticlockwise about 40° relatively to Fennoscandia. In the next 20 Ma Fennoscandia and the Ukrainian shield drifted southward at about 5° and occupied 10°N and 7°S paleolatitudes respectively, but relative rotation of blocks almost did not occur. The average speed of latitudinal drift of both blocks was near to 2.8 cm/yr. The new results of paleomagnetic studies of Volhyn basalts of Ratnenska suite are presented. We assume that the geometry of the geomagnetic field was not dipole as one of the interpretation of these results. In this context we should study of whole Volyn traps sequence from boreholes and Ediacaran—Cambrian sequences of Podolia in order to gather some data about frequency of geomagnetic reversals.
References
Artemenko, G. V., Zhukov, G. V., Klots, V. A. (1985). Isotopic age of granodiorites of the Osipenko village area (Western Azov). Dopovidi AN URSR, 3, 6—7 (in Ukrainian).
Bakhmutov, V. G. & Iosifidi, A. G. (2010). Paleomagnetism of Paleoproterozoic igneous rocks of Ukrainian Shield: The abstracts of the International Scientific-practical conference “Stratigraphy, geochronology and correlation of the Lower Precambrian rock complexes of the basement of the East European Platform” (May 31—June 4, 2010) (pp. 25—27). Kiev: UkrGGRI (in Russian).
Bakhmutov, V., Teisseyre-Jeleńska, M., Kądziałko-Hofmokl, M., Konstantinenko, L. & Poliachenko, I. (2012). Paleomagnetic studies of Low Devonian grey deposits of Podolia. Geofizicheskiy zhurnal, 34(6), 57—67. https://doi. org/10.24028/gzh.0203-3100.v34i6.2012.116703 (in Russian).
Velikanov, V. A., Aseeva, E. A. & Fedonkin, M. A. (1983). Vendian of Ukraine. Kiev: Naukova Dumka (in Russian).
Velikanov, V. A., Korenchuk, L. V., Kiryanov, V. V., Gureev, Yu. A. & Aseeva, E. A. (1990). Vendian of Podolia. Guide tour of the III International Symposium on the Cambrian system and the margin of the Vendian and Cambrian. Kiev (in Russian).
Galle, I. & Pavlov, V. E. (2016). Three modes of geodynamo. Fizika Zemli, (2), 148—153. doi: 10.7868/S0002333716020046 (in Russian).
Glevasskaya, A. M., Kravchenko, S. N. & Kosovskiy, Ya. A. (2006). Magnetostratigraphic of traps from southwestern margin of the East European Craton. Geofizicheskiy zhurnal, 28(4), 121—130 (in Russian).
Glevasskaya, A. M., Mikhaylova, N. P. & Kravchenko, S. N. (2000). Paleomagnetism of the Volhynian and Mogilev-Podolian series of the Vendian of southwestern part of East-European platform. Geofizicheskiy zhurnal, 22(2), 3—18 (in Russian).
Starostenko, V. I. & Gintov, O. B. (Eds.). (2013). Kirovograd ore area. Deep structure. Tectonophysical analysis. Ore deposits. Kiev: Prastyi ludy (in Russian).
Lubnina, N. V., Bogdanova, S. V. & Shumlyanskiy, L. V. (2009). East-European craton in the Paleoproterozoic: new paleomagnetic determinations for magmatic complexes of the Ukrainian Shield. Geofizika, (5), 56—64 (in Russian).
Mikhailova, N. P. (1982). Problems of Precambrian paleomagnetism. Kiev: Naukova Dumka (in Russian).
Mikhailova, N. P. & Glevasskaya, A. M. (1989). Magnetization of the basic and ultrabasic rocks of the Ukrainian Shield. Kiev: Naukova Dumka (in Russian).
Mikhailova, N. P., Kravchenko, S. N. & Glevasskaya, A. M. (1994). Paleomagnetism of anorthosites. Kiev: Naukova Dumka (in Russian).
Pavlov V. E, Galle I., Shatsillo A. V. & Vodovozov V. Yu. (2004). Paleomagnetism of the Lower Cambrian in the valley of the lower reaches of the Lena River — new restrictions on the apparent polar wander of the pole of the Siberian platform and the anomalous mode of the geomagnetic field at the beginning of the Phanerozoic. Fizika Zemli, (2), 28—49 (in Russian).
Khramov, A. N. (Eds). (1982). Paleomagnetology. Leningrad: Nedra (in Russian).
Pecherskiy, D. M. & Didenko, A. N. (1995). Paleoasian Ocean. Moskva: IFZRAN (in Russian).
Stepaniuk, L. M. (1996). Crystallogenesis and the age of zircon from the rocks of the mafic-ultramafic association of Middle Pobuzhye. Mineralogicheskiy zhurnal, 18(4), 10—19 (in Russian).
Hozhyk, P. F. (Eds). (2013). Stratigraphy of Upper Proterozoic and Phanerozoic of Ukraine. Stratigraphy Upper Proterozoic, Paleozoic and Mesozoic of Ukraine (Vol. 1). Kyiv: Lohos (in Ukrainian).
Khramov, A. N., Fedotova, M. A., Pisakin, B. N. & Priiatkin, A. A. (1997). Paleomagnetism of Early Proterozoic intrusions and related rocks of Karelia and the Kola Peninsula: contribution to the development of the model of Precambrian Evolution of the Russian-Baltic Craton. Fizika Zemli, (6), 24—41 (in Russian).
Shcherbak, N. P., Artemenko, G. V., Lesnaia, I. M. & Ponomarenko, A. N. (2005). Geochronology of the Early Precambrian of the Ukrainian Shield. Archean. Kiev: Naukova Dumka (in Russian).
Abrajevitch, A. & Van der Voo, R. (2010). Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis. Earth and Planetary Science Letters, 293(1-2), 164—170. https://doi.org/10.1016/j.epsl.2010.02.038.
Bazhenov, M. L., Levashova, N. M., Meert, J. G., Golovanova, I. V., Danukalov, K. N. & Fedorova, N. M. (2016). Late Ediacaran magnetostratigraphy of Baltica: Evidence for Magnetic Field Hyperactivity? Earth and Planetary Science Letters, 435, 124—135. https://doi.org/10.1016/j.epsl.2015.12.015.
Besse, J. & Courtillot, V. (2002). Apparent and True Polar Wander and the geometry of the geomagnetic field over the last 200 Myr. Journal of Geophysical Research, 107. http://doi. org/10.1029/2000JB000050.
Biggin, A. J., Steinberger, B., Aubert, J., Suttie, N., Holme, R., Torsvik, T. H., van der Meer, D. G. & van Hinsbergen, D. J. J. (2012). Possible links between long-term geomagnetic variations and whole-mantle convection processes. Nature Geoscience, 5(8), 526—533. https://doi.org/10.1038/ngeo1521.
Creer, K. M., Irving, E. & Runcorn, S. K. (1954). The direction of the geomagnetic field in remote epochs in Great Britain. Journal of Geo-magnetism and Geoelectricity, 6(4) 163—168. https://doi.org/10.5636/jgg.6.163.
Damm, V., Gendler, T. S., Gooskova, E. G., Khramov, A. N., Lewandowski, M., Nozharov, P., ... Sokolov, S. J. (1997). Palaeomagnetic studies of Proterozoic rocks from the Lake Onega region, southeast Fennoscandian Shield. Geophysical Journal International, 129(3), 518—530. https://doi.org/10.1111/j.1365-246X.1997. tb04491.x.
Elming, S. A., Kravchenko, S. N., Layer, P., Rusakov, O. M., Glevasskaya, A. M., Mikhailova, N. P., & Bachtadse, V. (2007). Palaeomagnetism and 40Ar/39Ar age determinations of the Ediacaran traps from the southwestern mar-gin of the East European Craton, Ukraine: relevance to the Rodinia break-up. Journal of the Geological Society, 164(5), 969—982. https:// doi.org/10.1144/0016-76492005-163.
Elming, S.-A., Mikhailova, N. P. & Kravchenko, S. N. (2001). Palaeomagnetism of Proterozoic rocks from the Ukrainian Shield: new tectonic reconstruction of the Ukrainian and Fennoscandian shields. Tectonophysics, 339(1-2), 19—38. https://doi.org/10.1016/S0040-1951 (01)00032-4.
Elming, S.-A., Mikhailova, N. P. & Kravchenko, S. N. (1998). The Consolidation of the East European Craton: a paleomagnetic analysis of Proterozoic rocks from the Ukrainian Shield and tectonic reconstructions versus Fennoscandia. Geophysical Journal, 20(4), 71—74.
Elming, S.-A., Pesonen, L. J., Leino, M., Khramov, A. N., Mikhailova, N. P., Krasnova, A. F., ... Terho, M. (1993). The continental drift of the Fennoscandian and Ukrainan Shields during the Precambrian. Tectonophysics, 223(3-4), 177—198. http://dx.doi.org/10.1016/0040-1951(93)90137-9.
Elming, S.-A., Shumlyanskyy, L., Kravchenko, S., Layer, P. & Söderlund, U. (2010). Proterozoic Basic dykes in the Ukrainian Shield: A palaeomagnetic, geochronologic and geochemical study—The accretion of the Ukrainian Shield to Fennoscandia. Precambrian Research, 178(1), 119—135. http://doi.org/10.1016/j.precamres. 2010.02.001.
Fedotova, M. A., Khramov, A. N., Pisakin, B. N. & Priyatkin, A. A. (1999). Early Proterozoic palaeomagnetism: new results from the intrusives and related rocks of the Karelian, Belomorian and Kola provinces, eastern Fennoscandian Shield. Geophysical Journal International, 137(3), 691—712. https://doi.org/10.1046/j.1365-246x.1999.00817.x.
Gallet, Y., Pavlov, V., Halverson, G., & Hulot, G. (2012). Toward constraining the long-term reversing behavior of the geodynamo: A new “Maya” superchron ~1 billion years ago from the magnetostratigraphy of the Kartochka Formation (southwestern Siberia). Earth and Planetary Science Letters, 229-340, 117—126. https: //doi.org/10.1016/j.epsl.2012.04.049.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. (Eds). (2012). The Geologic Time Scale 2012 (Vol. 1). Boston: Elsevier. http://dx.doi.org/10.1016/B978-0-444-59425-9.01001-5.
Halls, H. C., Lovette, A., Hamilton, M. & Söderlund, U. (2015). A paleomagnetic and U-Pb geochronology study of the western end of the Grenville dyke swarm: Rapid changes in paleomagnetic field direction at ca. 585 Ma related to polarity reversals? Precambrian Re-search, 257, 137—166. https://doi.org/10.1016 /j.precamres.2014.11.029.
Iosifidi, A. G., Bachtadse, V., Taiat, J., Khramov, A. N. & Kuznetsova, A. V. (2001). Palaeomagnetic data from Vendian rocks from the Ukraine. XXVI EGS General Assembly, Nice 2000. Geophysical Research Abstracts, (3), 1206.
Iosifidi, A. G., Khramov, A. N. & Bachtadse, V. (2005). Multicomponent magnetization of Vendian sedimentary rocks in Podolia, Ukraine. Russian Journal of Earth Sciences, 7(1), 1—14.
Jarboe, N. A., Koppers, A. A., Tauxe, L., Minnett, R. & Constable, C. (2012). The online MagIC Database: data archiving, compilation, and visualization for the geomagnetic, paleomagnetic and rock magnetic communities. AbstractGP31A-1063, American Geophysical Union Fall Meeting, San Francisco.
Jeleńska, M., Kądziałko-Hofmokl, M., Bakhmutov, V., Poliachenko, I. & Ziółkowski, P. (2014). Palaeomagnetic and rock magnetic study of Lower Devonian sediments from Podolia, SW Ukraine: remagnetization problems. Geophysical Journal International, 200(1), 557—573. https://doi.org/10.1093/gji/ggu411.
Kirschvink, J. L., Ripperdan, R. L., Evans D. A. (1997). Evidence for a Large-Scale Reorganization of Early Cambrian Continental Mas-ses by Inertial Interchange True Polar Wander. Science, 277, 541—545. https://doi.org/10.1126/science.277.5325.541.
Kravchenko, S. N. (2005). First estimate for the age of a mesoproterozoic palaeomagnetic pole from the Volodarsk-Volynsky Massif, The Ukrainian Shield. Studia Geophysica et Geodaetica, 49(2), 177—190. https://doi.org/10.1007/s11200-005-0004-6.
Levashova, N. M., Bazhenov, M. L., Meert, J. G., Danukalov, K. N., Golovanova, I. V., Kuznetsov, N. B. & Fedorova, N. M. (2015). Paleomagnetism of upper Ediacaran clastics from the South Urals: Implications to paleogeography of Baltica and the opening of the Iapetus Ocean. Gondwana Research, 28(1), 191—208. http://dx.doi.org/10.1016/j.gr.2014.04.012.
Meert, J. G. (1999). A paleomagnetic analysis of Cambrian true polar wander. Earth and Planetary Science Letters, 168(1-2), 131—144. https: //doi.org/10.1016/S0012-821X(99)00042-4.
Nawrocki, J., Boguckij, A. & Katinas, V. (2004). New late Vendian palaeogeography of Baltica and the TESZ. Geological Quarterly, 48(4), 309—316.
Pisarevsky, S. A., Komissarova, R. A. & Khramov, A. N. (2001). Reply to comment by J. G. Meert and R. Van der Voo on “New palaeomagnetic result from Vendian red sediments in Cisbaikalia and the problem of the relationship of Siberia and Laurentia in the Vendian”. Geophysical Journal International, 146(3), 871—873. https://doi.org/10.1046/j. 0956-540x.2001.01475.x.
Pisarevsky, S. A. & McElhinny, M. W. (2003). Global Paleomagnetic Data Base developed into its visual form. Eos, Transactions American Geophysical Union, 84(20), 192—192. https: //doi.org/10.1029/2003EO200007.
Pisarevsky, S. A. & Sokolov, S. J. (2001). The magnetostratigraphy and a 1780 Ma palaeomagnetic pole from the red sandstones of the Vazhinka River section, Karelia, Russia. Geophysical Journal International, 146(2), 531—538. https://doi.org/10.1046/j.0956-540x.2001. 01479.x.
Shcherbakova, V., Bakhmutov, V., Shcherba-kov, V. & Zhidkov, G. (2018). Extremely low palaeointensities in the Neoproterozoic obtai-ned on volcanic rocks from the Ukrainian Shi-eld. EGU General Assembly 2018. Geophysical Research Abstracts, 20.
Shumlyanskyy, L., Hawkesworth, C., Billström, K., Bogdanova, S., Mytrokhyn, O., Romer, R., ... Bilan, O. (2017). The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian Shield: New U-Pb ages and Hf isotopes in zircon. Precambrian Research, 292, 216—239. https://doi.org/10.1016/j.precamres.2017.02. 009.
Torsvik, T. H., Meert J. G. & Smethurst M. A. (1998). Polar Wander and the Cambrian. Science, 279, 9. https://doi.org/10.1126/science. 279.5347.9a.
Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B. & Gaina, C. (2008). Global plate motion frames: Toward a unified model. Reviews of Geophysics, 46(3). http://dx.doi. org/10.1029/2007RG000227.
Torsvik, T., Van Der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., ... Cocks, L. R. M. (2012). Phanerozoic polar wander, paleogeography and dynamics. Earth-Science Reviews, 114(3-4), 325—368. https://doi.org/10.1016/j.earscirev.2012.06.007.
Van der Voo, R. (1993). Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans. London: Cambridge University Press. https://doi.org/10.1017/CBO9780511524936.
Van der Voo, R. (1990). The reliability of paleo-magnetic data. Tectonophysics, 184(1), 1—9. https://doi.org/10.1016/0040-1951(90)90116-P.
Veikkolainen, T., Pesonen, L. J. & Evans, D. A. D. (2014). PALEOMAGIA: A PHP/MYSOL database of the Precambrian paleomagnetic data. Studia Geophysica et Geodaetica, 58(3), 425—441. https://doi.org/10.1007/s11200-013-0382-0.
Veselovskiy, R. V. (2013) Paleomagnetism, geo-chronology and magnetic mineralogy of Devonian dikes from the Kola alkaline province (NE Fennoscandian Shield). Izvestiya, Physics of the Solid Earth, 49(4), 526—547. https://doi.org/10.1134/S106935131303018X.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).