Plate-plume tectonics as an integrated mechanism of geodynamic development of the tectonosphere of Ukraine and adjacent regions

Authors

  • O . B. Gintov Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v41i6.2019.190064

Keywords:

the Ukrainian shield, geodynamics, plate tectonics, plume-tectonics, down-welling, seismic tomography, DSS, Eurobridge-97

Abstract

A progress of geodynamic processes in Early Precambrian of the Ukrainian Shield (USh) has been considered. Based on the known data on plate- and plume-tectonic processes of Phanerozoic the following problems have been investigated: 1) what trajectories of material flows in Precambrian mantle might occur; 2) what was an interaction of plumes and regular mantle convection; 3) the time of existence of plumes and are they permanent or pulsating; 4) the time of beginning of Precambrian geodynamic processes comparable with Phanerozoic ones. It has been shown taking as examples the Ukrainian and the Canadian shields that present-day thermochemical and dynamic processes do not completely delete geological-geophysical features of ancient zones of subduction and plumes in solid lithosphere and adjacent areas of mesosphere preserved since Early Precambrian. The Earth crust of these shields was intensely reprocessed by granitization and basification comparable with activity of hot points that were more developed than now. Within the area of USh these processes were the most active in the interval 2,0±0,2 Ga. Two of stages of geodynamic evolution of the USh within the limits of the Bug-Middle Dnieper-Periazov and Volyn-Podolian parts, superimposed in time, have been studied. Comparison of materials of geologic-geophysical mapping of this territory with the data of deep seismic sounding (DSS) and seismography allows refining geodynamic model of the Volyn-Podolian part of the USh along the trans-sect Eurobridge-97 composed earlier. Tectonophysical justification of necessity to include pulsating plumes with which formation of the Korsun-Novomyrgorod and Korosten plutons of gabbro -anorthosites and rapakivi was particularly associated to geodynamic process has been given. Comparison of models of subduction-collision processes within the limits of the USh and the Superior Province (Canada) has shown that independent approaches to solving geodynamic problems give relative results. The materials obtained on the USh do not exhaust all the possible episodes of its Neoarhean –Proterozoic geodynamic development. Trailing of super-modern DSS geo-travers along the axial part of the USh is required for their study.

References

Bugaenko, I. V., Shumlyanskaya, L. A., Zayets, L. N., & Tsvetkova, T. A. (2008). Three-dimensional P-speed model of the mantle of the Black Sea and surrounding area. Geofizicheskiy zhurnal, 30(5), 145—160 (in Russian).

Geyko, V. S., Bugaenko, I. V., Shumlyanskaya, L. A., Zaets, L. N., & Tsvetkova, T. A. (2007). 3-D P-velocity structure of the upper mantle of the Eastern Mediterranean. Geofizicheskiy zhurnal, 29(4), 13—30 (in Russian).

Shcherbak, N. P. (2005). Geochronology of the Early Precambrian of the Ukrainian Shield. Archean. Kiev: Naukova Dumka, 244 p. (in Russian).

Shcherbak, N. P. (2008). Geochronology of the Early Precambrian of the Ukrainian Shield. Proterozoic. Kiev: Naukova Dumka, 240 p. (in Russian).

Antsiferov, A. V. (2006). Geological and geophysical model of the Kryvyi Rih-Kremenchug seam zone of the Ukrainian shield. Kiev: Naukova Dumka, 196 p. (in Russian).

Gintov, O. B. (2012). Precambrian Ukrainian shield and plate tectonics. Geofizicheskiy zhurnal, 34(6), 2―21 (in Russian).

Gintov, О. B. (2005). Field tectonophysics and its application in the study of deformations of the earth’s crust of Ukraine. Kiev: Feniks, 572 р. (in Russian).

Gintov, O. B. (2015). Problems of geodynamics of the Ukrainian shield in Precambrian. Geofizicheskiy zhurnal, 36(1), 3―18. https://doi.org/10.24028/gzh.0203-3100.v37i5.2015.111142 (in Russian).

Gintov, O. B. (2014). Scheme of periodization of faulting stages in the Earth’s crust of the Ukrainian Shield — new data and consequences. Geofizicheskiy zhurnal, 36(1), 3―18. https://doi.org/10.24028/gzh.0203-3100.v36i1.2014.116145 (in Russian).

Gintov, O. B., Yegorova, T. P., Tsvetkova, T. A., Bugaenko, I. V., & Murovskaya, A. V. (2014). Geodynamic features of joint zone of the Eurasian plate and the Alpine-Himalayan belt within the limits of Ukraine and adjacent areas. Geofizicheskiy zhurnal, 36(5), 26—63. https://doi.org/10.24028/gzh.0203-3100.v36i5.2014.111568 (in Russian).

Gintov, O. B., & Pashkevich, I. K. (2010). Tectonophysical analysis and geodynamic interpretation of the three-dimensional geophysical model of the Ukrainian Shield. Geofizicheskiy zhurnal, 32(2), 3―27. https://doi.org/10.24028/gzh.0203-3100.v32i2.2010.117553 (in Russian).

Gintov, O. B., Tsvetkova, T. A., Bugaenko, I. V., & Murovskaya, A. V. (2016). Some features of the structure of the mantle of the Eastern Mediterranean and their geodynamic interpretation. Geofizicheskiy zhurnal, 38(1), 17―29. https://doi.org/10.24028/gzh.0203-3100.v38i1.2016.107719 (in Russian).

Glevassky, E. B. (2005). The solution of some problems of petrology and stratigraphy of the Ukrainian shield from the standpoint of plate tectonics. Mineralogicheskiy zhurnal, 27(2), 57—66 (in Russian).

Glevassky, E. B., & Kalyaev, G. I. (2000). Precambrian tectonics of the Ukrainian shield. Mineralogicheskiy zhurnal, 22(2-3), 77—91 (in Russian).

Gordienko, V. V., & Tarasov, V. N. (2001). Modern activation and helium isotopy of the territory of Ukraine. Kiev: Znaniye, 102 p. (in Russian).

Dobretsov, N. L. (2008). Geological consequences of the theory of the thermochemical model of plumes. Geologiya i geofizika, 49(7), 587—604 (in Russian).

Dobretsov, N. L. (2010). Global geodynamic evolution of the Earth and global geodynamic models of the Earth. Geologiya i geofizika, 51(6), 761—784 (in Russian).

Zakharov, V. S., Perchuk, A. L., Zavyalov, S. P., Sineva, T. A., & Gerya, T. V. (2015). Supercomputer modeling of continental collision in Precambrian: power effect of the lithosphere. Vestnik Moskovskogo universiteta. Seriya 4. Geologiya, (2), 3—10 (in Russian).

Ilchenko, T. V. (2002). The results of research by the NHS method along the Eurobridge-97 geotransect. Geofizicheskiy zhurnal, 24(3), 36―50 (in Russian).

Kalyaev, G. I. (1976). The Earth’s crust of the Ukrainian shield and plate tectonics. Geologicheskiy zhurnal, 36(1), 29—41 (in Russian).

Lobkovskiy, L. I., Nikishin, A. M., & Khain, V. E. (2004). Modern problems of geotectonics of geodynamics. Moscow: Nauchnyy Mir, 610 p. (in Russian).

Luneva, M. N. (2008). Seismic anisotropy and spatial distribution of the parameters of split waves from local earthquakes along the eastern part of Hokkaido. Fizicheskaya mezomekhanika, 11(1), 37—43 (in Russian).

Pashkevich, I. K., Kuprienko, P. Ya., Makarenko, I. B., & Savchenko, A. S. (2018). Geodynamics of the Dnieper-Donets depression. In: Essays on the Geodynamics of Ukraine (pp. 310—323). Kiev: VI EN EY (in Russian).

Puchkov, V. S. (2016). The relationship of plate tectonic and plume processes. Geotektonika, (4), 88―104 (in Russian).

Sollogub, V. B. (1986). Lithosphere of Ukraine. Kiev: Naukova Dumka, 183 р. (in Russian).

Sollogub, V. B., & Tripolsky, A. A. (1969). Some data on the deep structure of the earth’s crust along the Taganrog―Kirovograd profile. Geofizicheskiy sbornik AN SSSR, 31, 5―24 (in Russian).

Starostenko, V. I., & Gintov, O. B. (2018). Problems of geodynamics of the Ukrainian Precambrian (a review of views). In: Essays on the Geodynamics of Ukraine (pp. 355—367). Kiev: VI EN EY (in Russian).

Creation of a comprehensive three-dimensional geophysical model of the lithosphere in connection with magmatism, tectonics and the formation of minerals of the Ukrainian shield. (2006). Scientific report of the Institute of Geophysics of the NAS of Ukraine. Kiev, 515 p. Ukrgeolfond, state number Registration 0102U002478 (in Ukrainian).

Trubitsyn, V. P. (2008). Seismic tomography and continental drift. Fizika Zemli, (11), 3—19 (in Russian).

Trubitsyn, V. P., & Kharybin, E. V. (2010). Thermochemical mantle plumes. Doklady RAN, 435(5), 683―685 (in Russian).

Tsvetkova, T. A., & Bugayenko, I. V. (2012). Seismotomography of the mantle under the East European Platform: mantle velocity boundaries. Geofizicheskiy zhurnal, 34(5), 161—172. https://doi.org/10.24028/gzh.0203-3100.v34i5.2012.116672 (in Russian).

Tsvetkova, T. A., Bugaenko, I. V., & Zaets, L. N. (2019). The main geodynamic border and seismic visualization of plumes under the East European Platform. Geofizicheskiy zhurnal, 42(1), 137—152. https://doi.org/10.24028/gzh.0203-3100.v41i1.2019.158868 (in Russian).

Barruol, G., & Fontaine, F. R. (2013). Mantle flow beneath LaRéunion hotspot track from SKS splitting. Earth and Planetary Science Letters, 362, 108—121. https://doi.org/10.1016/j.epsl.2012.11.017.

Bédard, L. P., & Ludden, J. N. (1997). Nd-isotope evolution of Archaean plutonic rocks in southeastern Superior Province. Canadian Journal of Earth Sciences, 34(3), 286—298. https://doi.org/10.1139/e17-026.

Benn, K., Sawyer, E. W. & Bouchez, J.-L. (1992). Orogen parallel and transverse shearing in the Opatica belt, Quebec: Implications for the structure of the Abitibi Subprovince. Canadian Journal of Earth Sciences, 29(11), 2429—2444. https://doi.org/10.1139/e92-191.

Bogdanova, S. V. (1993). Segments of the East European Craton. In: Gee, D. G., & Beckholmen, M. (Eds.), EUROPROBE in Jablonna 1991 (pp. 33—38). European Science Foundation, Polish Academy of Sciences.

Bogdanova, S. V., Bingen, B., Gorbatschev, R., Kheraskova, T. N., Kozlov, V. I., Puchkov, V. N., & Volozh, Y. A. (2008). The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Research, 160(1-2), 23―45. https://doi.org/10.1016/j.precamres.2007.04.024.

Bogdanova, S. V., Gintov, O. B., Kurlovich, D. M., Lubnina, N. V., Nilsson, M. K. M. Orlyuk, M. I., Pashkevich, I. K., Shumlyanskyy, L. V., & Starostenko, V. I. (2013). Late Palaeoproterozoic mafic dyking in the Ukrainian Shield of Volgo-Sarmatia caused by rotations during the assembly of supercontinent Columbia (Nuna). Lithos, 174, 196―216. https://doi.org/10.1016/j.lithos.2012.11.002.

Bogdanova, S., Gorbatschev, R., Grad, M., Guterch, A., Janik, T., Kozlovskaya, E., Motuza, G., Skridlaite, G., Starostenko, V., & Taran, L. (2006). EUROBRIDGE: New insight into the geodynamic evolution of the East European Craton In: Gee, D. G., & Stephenson, R. A. (Eds.), European Lithosphere Dynamics (pp. 599―628). Geological Society, London, Memoirs, 32. Geological Society London.

Calvert, A. J. & Ludden, J. N. (1999). Archean continental assembly in the southeastern Superior Province of Canada. Tectonics, 18(3), 412—429. https://doi.org/10.1029/1999TC900006.

Chang, S.-J., Ferreira, A. M. G., Ritsema, J., van Heijst, H. J., & Woodhouse, J. H. (2015). Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. Journal of Geophysical Research: Solid Earth, 120(6), 4278―4300. https://doi.org/10.1002/2014JB011824.

Cook, F. A., van der Velden, A. J., Hall, K. W., & Roberts, B. J. (2005). Frosen subduction in Canada’s Northwest Territories: Lithoprobe deep lithosphere reflection profiling of the western Canadian Shield. Tectonics, 18(1), 1—24. https://doi.org/10.1029/1998TC900016.

Courtillot, V., Davaille, A., Besse, J., & Stock, J. (2003). Three Distinct Types of Hotspots in the Earth’s Mantle. Earth and Planetary Science Letters, 205(3/4), 295—308. https://doi.org/10.1016/S0012-821X(02)01048-8.

Davis, D. W. (1992). Age constraints on deposition and provenance of Archean sediments in the southern Abitibi and Pontiac subprovinces from U-Pb analyses of detrital zircons (pp. 147—150). Lithoprobe Rep. 25, Univ. of B.C., Vancouver, Canada.

Davis, W. J., Gariépy, C. & Sawyer, E. W. (1994). Pre-2.8 Ga crust in the Opatica gneiss belt: A potential source of detrital zircons in the Abitibi and Pontiac subprovinces, Superior Province, Canada. Geology, 22(12), 1111—1114. https://doi.org/10.1130/0091-7613(1994)022<1111:PGCITO>2.3.CO;2.

Davies, G. F. (1993). Cooling the core and mantle by plume and plate flows. Geophysical Journal International, 115(1), 132—146. https://doi.org/10.1111/j.1365-246X.1993.tb05593.x.

Davies, G. F. (1988). Ocean bathymetry and mantle convection. 1. Large-scale flow and hotspots. Journal of Geophysical Research: Solid Earth, 93(B9), 10467—10480. https://doi.org/10.1029/JB093iB09p10467.

Dietz, R. (1961). Continent and ocean basin evolution by spreаding of the sea floor. Nature, 190, 854—857.

Ernst, R. E. (2014). Large igneous provinces. London: Elsevier, 653 p.

Faccenda, M., & Dal Zilio, L. (2017). The role of solid-solid phase transitions in mantle convection. Lithos, 268-271, 198—224. https://doi.org/10.1016/j.lithos.2016.11.007.

Ferreirа, A. M. G., Faccenda, M., Sturgeon, W., Chang, S.-J., & Schardong, L. (2019). Ubiquitous lower-mantle anisotropy beneath subduction zones. Nature Geoscience, (12), 301—306. doi: 10.1038/s41561-019-0325-7.

Fukao, Y., & Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research: Solid Earth, 118(11), 5920—5938. https://doi.org/10.1002/ 2013JB010466.

Fukao, Y., Obayashi, M., Nakakuki, T. & the Deep Slab Project Group. (2009). Stagnant slab: a review. Annual Review of Earth and Planetary Sciences, 37, 19—46. https://doi.org/10.1146/annurev.earth.36.031207.124224.

Gerya, T. (2014). Precambrian geodynamics: concepts and models. Gondwana Research, 25(2), 442—463. https://doi.org/10.1016/j.gr.2012.11. 008.

Geyko, V. S. (2004). A general theory of the seismic traveltime tomography. Геофиз. журн., 26(2), 3—32.

Gladkochub, D. P., Pisarevsky, S. A., Donskaya, T. V., Ernst, R. E., Wingate, M. T. D., Soderlund, U., Mazukabzov, A. M., Sklyarov, E. V., Hamilton, M. A., & Hanes, J. A. (2010). Proterozoic mafic magmatism in Siberian craton: An overview and implications for paleocontinental reconstruction. Precambrian Research, 183(3), 660—668. https://doi.org/10.1016/j.precamres.2010.02.023.

Grand, S. P., van der Hilst, R. D., & Widiyantoro, S. (1997). Global seismic tomography: A snapshot of convection in the Earth, GSA Today, 7, 1—7.

Hess, H. (1962). History of the ocean basins. Petrologic Studies, A Volume in Honor of A. F. Buddington, 599—620.

Karato, S.-I., Jung, H., Katayama, I., & Skemer, P. (2008). Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annual Review of Earth and Planetary Sciences, 36, 59—95. https://doi.org/10.1146/annurev.earth.36.031207.124120.

Keare, P., Klepeis, K. A., & Vine, F. J. (2009). Global tectonics. Dante by SNP Best-set Typesetters Ltd., Hong Kong. Printed and Hong Kong. 482 p.

Kimura, G., Ludden, J. N., Desrochers, J.-P., & Hori, R. (1993). A model of ocean-crust accretion for the Superior province, Canada. Lithos, 30, 337—355.

Lay, T., Hernlund, J., & Buffett, B. (2008). Core-mantle boundary heat flow. Nature Geoscience, 1(1), 25—32. doi:10.1038/ngeo.2007.44.

Maruyama, S., Santosh, M., & Zhao, D. (2007). Superplume, supercontinent, and post-perovskite: Mantle dynamics and anti-plate tectonics on the Core-Mantle Boundary. International Association for Gondwana Research, 11(1-2), 7—37. https://doi.org/10.1016/j.gr.2006.06.003.

McKenzie, D. P. & Weiss, N. (1975) Speculations on the thermal and tectonic history of the earth. Geophysical Journal International, 42(1), 31—74. https://doi.org/10.1111/j.1365-246X.1975.tb05855.x.

Mishin, Y. A., Gerya, T. V., Burg, J.-P., & Connolly, J. A. D. (2008). Dynamics of double subduction: Numerical modeling. Physics of the Earth and Planetary Interiors, 171(1-4), 280—295. https://doi.org/10.1016/j.pepi.2008.06.012.

Montelli, R., Nolet, G., Dahlen, F. A., & Masters, G. (2006). A catalogue of deep mantle plumes: New results from finite frequency tomography. Geochemistry, Geophysics, Geosystems, 7(11), Q11007. doi:10.1029/2006GC001248.

Morgan, W. J. (1971). Convective plumes in the lower mantle. Nature, 230, 42—43.

Nataf, H.-C. (2000). Seismic imaging of mantle plumes. Annual Review of Earth and Planetary Sciences, 28, 391—417. https://doi.org/10.1146/annurev.earth.28.1.391.

Olson, P. L., Glatzmaier, G. A., & Coe, R. S. (2011). Complex polarity reversals in a geodynamo model. Earth and Planetary Science Letters, 304(1-2), 168—179. https://doi.org/10.1016/j.epsl.2011.01.031.

Peng, P., Zhai, M.-G., & Guo, J.-H. (2006). 1,80—1,75 Ga mafic dyke swarms in the central North China Craton: Implications for a plume related break-up event. In: Hanski, E., Mertanen, S., Rämö, T., & Vuollo, J. (Eds.), Dyke Swarms — Time Markers of Crustal Evolution (pp. 99—112). Tailor & Francis, Leiden, the Netherlands.

Percival, J. A., Stern, R. A., Skulski, T., Card, K. D., Mortensen, J. K., & Bégin, N. J. (1994). Minto block, Superior Province: Missing link in deciphering assembly of the craton at 2,7 Ca. Geology, 22(9), 839—842. https://doi.org/10.1130/0091-7613(1994)022<0839:MBSPML>2.3.CO;2.

Richards, M. A., & Engebretson, D. C. (1992). Large-scale mantle convection and the history of subduction, Nature, 355, 437—440.

Sawyer, E. W. & Benn, K. (1993). Structure of the high-grade Opatica Belt and adjacent low-grade Abitibi Subprovince, Canada: An Archaean mountain front. Journal of Structural Geology, 15(12), 1443―1458. https://doi.org/10.1016/0191-8141(93)90005-U.

Sizova, E., Gerya, T., Brown, M., & Perchuk, L. L. (2010). Subduction styles in the Precambrian: Insight from numerical experiments. Lithos, 116(3-4), 209—229. https://doi.org/10.1016/j.lithos.2009.05.028.

Smith, R. B., Jordan, M., Steinberger, B., Puskas, C. M., Farrell, J., Waite, G. P., Husen, S., Wu-Lung, Ch., & O’Connell, R. (2009). Geodynamics of the Yellowstone hotspot and mantle plume: seismic and GPS imaging, kinematics, and mantle flow. Journal of Volcanology and Geothermal Research, 188(1-3), 26—56. https://doi.org/10.1016/j.jvolgeores.2009.08.020.

Starostenko, V., Janik, T., Kolomiyets, K., Czuba, W., Sroda, P., Grad, M., Kovacs, I., Stephenson, R., Lysynchuk, D., Thybo, H., Artemieva, I., Omelchenko, V., Gintov, O., Kutas, R., Gryn, D., Guterch, A., Hegedus, E., Komminaho, K., Legostaeva, O., Tiira, T., & Tolkunov, A. (2013). Seismic velocity model of the crust and upper mantle along profile PANCAKE across the Carpathians between the Pannonian Basin and the East European Craton. Tectonophysics, 608, 1049—1072. https://doi.org/10.1016/j.tecto.2013.07.008.

Su, W.-J., Woodward, R.L., & Dziewonski, A. M. (1994). Degree 12 model of shear velocity heterogeneity in the mantle. Journal of Geophysical Research: Solid Earth, 99(B4), 6945—6980. https://doi.org/10.1029/93JB03408.

Thybo, H., Janik, T., Omelchenko, V. D., Grad, M., Garetsky, R. G., Belinsky, A. A., Karatayev, G. I., Zlotski, G., Knudsen, M. E., Sand, R., Yliniemi, J., Tiira, T., Luosto, U., Komminaho, K., Giese, R., Guterch, A., Lund, C.-E., Kharitonov, K. M., Ilchenko, T., Lysynchuk, D. V., Skobelev, V. M., & Doody, J. J. (2003). Upper lithosphere seismic velocity structure across the Pripyat Trough and Ukrainian Shield along the EURUBRIDGE’97 profile. Tectonophysics, 371(1-4), 41—79. https://doi.org/10. 1016/S0040-1951(03)00200-2.

Trypolsky, O. A., Topoliuk, O. V., & Gintov, O. B. (2019). The structure of the Earth’s crust of the central part of the Holovanivsk suture zone according to the reinterpretation of materials of IV geotraverse of DSS (PK 295—400). Гео-

физ. журн., 41(1), 172—179. https://doi.org/10. 24028/gzh.0203-3100.v41i1.2019. 158870.

Walker, K. T., Bokelmann, G. H. R., & Klemperer, S. L. (2001). Shear-wave splitting to test mantle deformation models around Hawaii. Geophysical Research Letters, 28(22), 4319—4322. https://doi.org/10.1029/2001GL013299.

Walker, K. T., Bokelmann, G. H. R., Klemperer, S. L., & Bock, G. (2005). Shear-wave splitting around the Eifel hotspot: evidence for a mantle upwelling. Geophysical Journal International, 163(3), 962—980. https://doi.org/10.1111/j.1365-246X.2005.02636.x.

Wilson, J. T. (1963). A possible origin of the Hawaiian Islands. Canadian Journal of Physics, 41(6), 863—866. https://doi.org/10.1139/p63-094.

Yang, T., Shen, Y., van der Lee, S., Solomon, S. C., & Hung, S.-H. (2006). Upper mantle structure beneath the Azores hotspot from finite-frequency seismic tomography. Earth and Planetary Science Letters, 250(1-2), 11—26. https://doi.org/10.1016/j.epsl.2006.07.031.

Zhao, D. (2004). Global tomographic images of mantle plumes and subducting slabs: insight into deep earth dynamics. Physics of the Earth and Planetary Interiors, 146(1-2), 3—34. https://doi.org/10.1016/j.pepi.2003.07.032.

Published

2019-12-26

How to Cite

Gintov, O. . B. (2019). Plate-plume tectonics as an integrated mechanism of geodynamic development of the tectonosphere of Ukraine and adjacent regions. Geofizicheskiy Zhurnal, 41(6), 3–34. https://doi.org/10.24028/gzh.0203-3100.v41i6.2019.190064

Issue

Section

Articles