Analyis of periodical variability of insolation and soil temperature in the Crimea
DOI:
https://doi.org/10.24028/gzh.0203-3100.v41i6.2019.190076Keywords:
solar insolation, temperature of the Earth’s surface, wavelet-analysis, coherent oscillations, modelAbstract
According to the 22-year-old series of climatology NASA Surface meteorology and Solar Energy, the results of the analysis of the temporal series of local changes in insolation and the temperature of the earth and ground air in the Crimea are carried out. A statistical analysis was carried out and a continuous time-frequency wavelet analysis revealed increased (compared to other Crimean points) insolation and heating of the earth’s surface at Kara-Dag.
Using the time-and-frequency continuous wavelet analysis, six regular astronomical fluctuations, the periods of which are comparable with the periods of seasonal fluctuations, lunar and lunar-solar tidal waves, were found in the spectral structure of data on the average daily insolation incident on the horizontal surface of the earth at Kara-Dag. Periodic oscillations comparable with fluctuations in solar activity and the dynamics of rotation of the Earth-Moon system are described by sinusoidal functions, the parameters of which are determined from observations. In the data on the average daily total insolation falling on the surface of the earth at the Kara-Dag point, regular periodic fluctuations were found over an interval of periods of ~(87―402) days. The most powerful harmonic oscillations are distinguished in the interval of periods ~(231―452) days; in the time interval ~(1995―2005) years, an increasing local increase in the vibrational energy is observed. An increase in the average annual average surface temperature in the Crimea in a southeastern direction has been recorded. In individual points, deviations from the general trend are observed, which may be associated with local geological processes. The greatest warming of the earth’s surface is observed at Kara-Dag, which corresponds to increased general insolation at this point.
Using the method of calculating the functions of the mutual (two-channel) power spectral density, we established mutual correlations between the time sequences of observations of local changes in insolation and changes in the length of the day, the number of sunspots, and global temperature indices.
References
Berry, B. L. (1991). Synchronous processes in the shells of the Earth and their cosmic causes. Vestnik Moskovskogo gosudarstvennogo universiteta. Seriya 5, (1), 20―27 (in Russian).
Marple, S. L. ml. (1990). Digital spectral analysis and its applications. Moscow: Mir, 584 p. (in Russian).
Sidorenkov, N. S. (2002). Atmospheric processes and the rotation of the Earth. Sankt-Petersburg: Gidrometeoizdat, 200 p. (in Russian).
Dickey, J. O., Marcus, S. L., & de Viron, O. (2011). Air Temperature and Anthropogenic Forcing: Insights from the Solid Earth. Journal of Climate, (24), 569―574. https://doi.org/10.1175/ 2010JCLI3500.1.
Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79, 61―78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
Global Land ― Ocean Temperature Index. Retrieved from http://data.giss.nasa.gov/.
IERS Data. (2015). Retrieved from http://www.iers.org.
NASA Surface meteorology and Solar Energy. Annual Monthly Averaged Earth Skin Temperature. (2015). Retrieved from https://eosweb.larc.nasa.gov/.
NGDC Geomagnetic Calculators. (2015). Retrieved from http:// www.ngdc.noaa.gov.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).