On the processes of diorthogonalization of some vector families, which appear while characteristic polynomes of matrices are being constructed and which are used for solving the systems of linear algebraic equations. 1

Authors

  • O. A. Chernaya Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine
  • A. I. Yakimchik Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-5091-9221

DOI:

https://doi.org/10.24028/gzh.0203-3100.v27i3.2005.214451

Abstract

In accordance with published data some methods of indirect determination of characteristic matrix polynome based upon orthogonalization of some vectors sequences have been outlined in the paper. The normal course of calculation process is shown to be dependent not only on the structure of the initial matrix but also on appropriate choice of the initial vector (or a couple of vectors if a method of bioorthogonalization is the case in point).

References

Березин И. С., Жидков Н. П. Методы вычислений. Т. 2. – М.: Физматгиз, 1960. – 620 с.

Бурдина В. И. К одному методу решения систем линейных алгебраических уравнений // Докл. АН СССР. – 1958. – 20, № 2 – С. 235–238.

Воеводин В. В. Вычислительные основы линейной алгебры. – М.: Наука, 1977. – 304 с.

Годунов С. К. Решение систем линейных уравнений. – Новосибирск: Наука, 1980. – 177 с.

Кублановская В. Н. Об одном процессе доортогонализации системы векторов // Журн. вычисл. математики и матем. физ. – 1965. – 5, № 2. – С. 326–329.

Ланцош К. Практические методы прикладного анализа. – М.: Физматгиз, 1961. – 524 с.

Уилкинсон Дж. Х. Алгебраическая проблема собственных значений. – М.: Наука, 1970. – 564 с.

Фаддеев Д. К., Фаддеева В. Н. Вычислительные методы линейной алгебры. – М. – Л.: Физматгиз, 1963. – 734 с.

Черный А. В. О точности численных решений некоторых задач геофизики // Теория и практика интерпретации гравитационных и магнитных полей в СССР. – Киев: Наук. думка, 1983 – С. 263 – 290.

Hestenes M. R., Stiefel E. Methods of conjugate gradients for solving linear systems // J. Res. Nat. Bur. Standards. – 1952 (1953). – 49, № 5. – P. 409–436.

Lanczos C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators // Ibid. – 1950. – 45, № 4. – P. 255–282.

Lanczos C. Solution of systems of equations by minimized iterations // Ibid. – 1952. – 49, № 1. – P. 33–53.

Published

2005-06-01

How to Cite

Chernaya, O. A., & Yakimchik, A. I. (2005). On the processes of diorthogonalization of some vector families, which appear while characteristic polynomes of matrices are being constructed and which are used for solving the systems of linear algebraic equations. 1. Geofizicheskiy Zhurnal, 27(3), 503–511. https://doi.org/10.24028/gzh.0203-3100.v27i3.2005.214451

Issue

Section

Articles