Principal component model in macroseismicity
DOI:
https://doi.org/10.24028/gzh.0203-3100.v42i5.2020.215080Keywords:
principal component model, probabilistic of seismic hazard analysis (PSHA), SPSS-statistical package for social sciencesAbstract
Seismic processes are complex and diverse, since their formation is caused by complex, diverse geological and geophysical processes occurring in the Earth’s interior, and are characterized by a set of parameters, and the results of observations over them are presented as multidimensional random variables. When studying such multiparametric processes, the question arises: can we discard some of the parameters, or replace them with a smaller number of some functions from them, while preserving all the information? To solve this problem, we use factor analysis, which is based on determining the minimum number of factors that make up the largest share in the data variance. In the study of the complex nature of seismicity, factor analysis helps to understand better the essence of seismic processes, since the interdependence between seismic parameters must be due to the relationships between parameters, the identification of which is the task of factor analysis.
In order for the regression analysis based on the usual least squares method to give the best results, the random error must satisfy the Gauss-Markov conditions: the mathematical expectation of the random error in any observation must be zero, which means it should not have a systematic bias. Usually, if the regression equation includes a free term, then this means that the condition is satisfied automatically, since the role of the constant is to determine any systematic tendency of the explained variable included in the regression equation. Multicollinearity means a high cross-correlation of the explanatory regression variables. The lack of high collinearity of the regressors is one of the conditions for applying the least squares method to estimate the parameters of multidimensional linear regression. To assess the values of the coefficients of the attenuation function, in the presence of multicollinearity, we use regression analysis on the main components, where the strongly correlated regressors are replaced by components F1, F2, F3, F4, identified by the model of the main components of factor analysis, between which there is no correlation.
References
Alkaz, V.G. (2007). Fundamentals of seismic hazard and seismic risk prediction for the territory of the Republic of Moldova. Chisinau, 229 p. (in Russian).
Gabrielyan, R.G. (2008). Econometrics: Metho¬do¬lo¬gical Guide. Vidnoe, 85 p. (in Russian).
Leshchinskyy, O.L., Ryazantseva, V.V., & Yun¬ko¬va, O.O. (2003). Econometrics: a textbook for students of higher educational institutions. Kyiv: Publishing House «Personnel», 208 p. (in Ukrainian).
Mkhitaryan, V.S., Arkhipova, M.Yu., & Sirotin, V.P. (2008). Econometrics: educational and methodological complex. Moscow: EAOI Publishing Center, 144 p. (in Russian).
Senyo, P.S. (2007). Probability theory and mathematical statistics. Kyiv: Znannya, 558 p. (in Ukrainian).
Sidenko, A.V., Vishnyakov, V.V., & Isaev, S.M. (2011). Theory of statistics: textbook. Moscow: MAKS Press, 376 p. (in Russian).
Burtiev, R. (2017). Seismic hazard assessment method based on the stochastic models of seismicity. Bulletin of the International Institute of Seismology and Earthquake Engineering, 51, 22—38.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).