Coronavirus scent
DOI:
https://doi.org/10.24028/gzh.0203-3100.v42i5.2020.215368Keywords:
COVID-19, contagiousness period, epidemic dynamicsAbstract
It is shown that epidemic dynamics and total number of people with a viral disease in a closed community critically depend on the duration of the period of virus contagiousness. The time that an infected person remains infectious is limited either by his/her isolation or by a natural decrease in virus activity. From laboratory data on changes in virus COVID-19 activity over time and on the basis of studying the epidemic dynamics in various communities, it follows that if the isolation of an infected person is not effectively used to combat the epidemic, then the individual, on average, remains contagious for 9—10 days after being infected. Modeling shows that in this case approximately 15 % of the closed community population will be finally infected (including asymptomatic cases). Since only about 20 % of those infected go to the doctor and are registered in the statistics, it should be expected that the number of registered cases would be about 3 % of the population. Currently, only Israel has reached this threshold.
References
Allen, L.J.S. (2008). An Introduction to Stochastic Epidemic Models. In F. Brauer, P. van den Driessche, J. Wu (Eds.), Mathematical Epidemiology. Lecture Notes in Mathematics (Vol. 1945, pp. 81—130). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-78911-6_3.
Brauer, F. (2008). Compartmental models in epidemiology. In F. Brauer, P. van den Driessche & J. Wu (Eds.), Mathematical Epidemiology. Lecture Notes in Mathematics (Vol. 1945, pp. 19—79). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-78911-6_2.
Buchanan, M. (2020). The limits of a model. Nature Physics, 16, 605. doi: 10.1038/s41567-020-0934-5.
Cobey, S. (2020). Modeling infectious disease dynamics. Science, 368, 713—714. doi: 10.1126/science.abb5659.
Dietz, K., & Schenzle, D. (1985). Mathematical Models for Infectious Disease Statistics. In A.C. Atkinson & S.E. Fienberg (Eds.), A Celebration of Statistics (pp. 167—204). New York: Springer-Verlag. doi:10.1007/978-1-4613-8560-8_8.
Einstein, A. (1934). On the Method of Theoretical Physics. Herbert Spencer Lecture, Oxford (10 June 1933). Philosophy of Science, 1(2), 163—169.
Kermack, W.O., & McKendrick, A.G. (1927). Contributions to the mathematical theory of epidemics — I. Proc. Royal Soc., 115A, 700—721. doi:10.1016/S0092-8240(05)80040-0.
Lauer, S.A., Kyra, H., Bi, G., Jones, F.K., Zheng, Q., Meredith, H.R., Azman, A.S., Reich, N.R., & Les¬sler, J. (2020). The incubation period of co¬ronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Annals of Internal Medicine, 172(9), 577—582. doi: 10.7326/M20-0504.
Mallapaty, S. (2020). How deadly is the coronavirus? Nature, 582, 467—468. doi: 10.1038/d41586-020-01738-2.
Mizumoto, K., Kagaya, K., Zarebski, A., & Chowell, G. (2020). Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. EuroSurveillance, 25(10), 2000180. doi: 10.2807/1560-7917.ES.2020.25.10.2000180.
Neher, R.A., Dyrdak, R., Druelle, V., Hodcroft, E.B., & Albert, J. (2020). Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss Medical Weekly, 150, w20224. doi:10.4414/smw.2020.20224.
Patel, M., Charlett, A., Lopez, B.J., Saliba, V., Ellis, J., Ladhani, S., Zambon, M., & Gopal, R. (2020). Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. EuroSurveillance, 25(32), 2001483. doi: 10.2807/1560-7917.ES.2020.25.32.2001483.
Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C. et al. (2020). Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. The New England Journal of Medicine, 382, 970—971. doi: 10.1056/NEJMc2001468.
Russell, T.W, Hellewell, J., Jarvis, C.I., van Zandvoort, K., Abbott, S., Ratnayake, R., CMMID COVID-19 working group, Flasche, S., Eggo, R.M., Edmunds, W.J., & Kucharski, A.J. (2020). Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess Cruise ship, February 2020. EuroSurveillance, 25(12), 2000256. doi:10.2807/1560-7917.ES.2020.25.12.2000256.
Sanche, S., Lin, Y., Xu, C., Romero-Severson, E., Hengartner, N., & Ke, R. (2020). High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2. Emerging Infectious Diseases, 26(7), 1470—1477. https://dx.doi.org/10.3201/eid2607.200282.
Streeck, H., Schulte, B., Kuemmerer, B., Richter, E., Hoeller, N., Fuhrmann, C., Bartok, E., Dolscheid, R., Berger, M., Wessendorf, L., Eschbach-Bludau, M., Kellings, A., Schwaiger, A., Martin Coenen, C., Hoffmann, P., Noethen, M., Eis-Huebinger, A-M., Exner, M., Schmithausen, R., Schmid, M., & Hartmann, G. (2020). Infection fatality rate of SARS-CoV-2 infection in a German community with a super-spreading event. medRxiv. doi: 10.1101/2020.05.04.20090076.
Thompson, E.L., & Smith, L.A. (2019). Escape from model-land. Economics: The Open-Access, Open-Assessment E-Journal, 13, 1—15. doi: 10.5018/economics-ejournal.ja.2019-40.
Van den Driessche, P., & Watmough, J. (2008) Further Notes on the Basic Reproduction Number. In F. Brauer, P. van den Driessche, J. Wu (Eds.), Mathematical Epidemiology. Lecture Notes in Mathematics (Vol. 1945, pp. 159—178). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-78911-6_6.
Viglione, G. (2020). How many people has the coronavirus killed? Nature, 585, 22—24. doi: 10.1038/d41586-020-02497-w.
Wu, J. (2008). Spatial Structure: Partial Differential Equations Models. In F. Brauer, P. van den Driessche, J. Wu (Eds.), Mathematical Epidemiology. Lecture Notes in Mathematics (Vol. 1945, pp. 191—203). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-78911-6_8.
Wu, J., McCann, A., Katz, J., Peltier, E. & Deep, K.S. (2020, October 5). 338,000 Missing Deaths: Tracking the True Toll of the Coronavirus Outbreak. The New York Times. Retrieved from https://www.nytimes.com/interactive/2020/04/21/world/coronavirus-missing-deaths.html.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).