Prospects for exploration of hydrogen fields in riftogene structures of platforms (the case of the Dnieper-Donets Aulacogene)


  • V. Shestopalov Radioenvironmental Centre of the National Academy оf Sciences of Ukraine; Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Ukraine
  • O. Lukin Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Ukraine
  • V. Starostenko Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • O. Ponomarenko M. P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the National Academy of Sciences of Ukraine, Ukraine
  • T. Tsvetkova Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • I. Koliabina Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Ukraine
  • O. Makarenko Radioenvironmental Centre of the National Academy оf Sciences of Ukraine, Ukraine
  • O. Usenko Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • O. Rud G. V. Kurdyumov Institute of Metal Physics of the National Academy of Sciences of Ukraine, Ukraine
  • A. Onoprienko NDI Foundation, Ukraine
  • V. Saprykin Radioenvironmental Centre of the National Academy оf Sciences of Ukraine, Ukraine
  • R. Vardapelian Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine



deep geological hydrogen, hydrocarbons, ring structures, rift, Sribne structure, hydrogen degassing, hydrogen deposits


This paper shows the prospect to find industrial-scale hydrogen accumulations in riftogenic structures of platforms using the example of the Dnieper-Donets Aulacogene, located in the southern part of the East European Platform. Within the Dnieper-Donets Depression, geological and geophysical methods indicate a significant number of deep faults and ring structures of volcanogenic and explosive origin promising increased hydrogen content. Possible locations of the most propitious areas of hydrogen concentration are associated with faults in rift systems and their nearest margins, as well as with explosive and volcanogenic ring structures with signs of modern activation. At a fine-grained level, the prospectivity of the area is determined not only by the specified structural relationship, but also by the set of geophysical characteristics (thermal, seismic, gravity, electrical conductivity, magnetic) and the corresponding geological and hydrogeological parameters. Areas for further more detailed investigations within the Sribne and other ring structures, Southern Near-Edge Fault, Northern Near-Edge Fault were identified based on the data on geological and geophysical materials, satellite images, and field work. We defined high-priority and low-priority territories. Areas for initial investigations using satellite images, gas sampling (hydrogen, helium, methane, etc.), primary geophysical surveys (with evaluation of intermediate reservoirs and cap rocks) were identified. The primary results can be used to plan pilot shallow drilling and wells sampling. The areas for priority deeper drilling and sampling are selected by the sum of results obtained and data comparison. The paper presents the results obtained 30 km east of Kyiv as an example of field assessment of H2 degassing in a local depression. The results show that hydrogen concentrations at depths of 0.45 to 1.5 m are near zero outside the local depression. The maximum values of H2 concentration (up to 3300 ppm 1.5 m deep) are characteristic of the point inside the depression.


Belov, S. V. (2011). Hydrogen degassing of the planet: analysis of volcanic structures. Oko planet. Retrieved from (in Russian).

Blair, C. C., D’Hondt, S., Spivack, A. J., & Kingsley, R. H. (2007). Radiolytic hydrogen and microbial respiration in subsurface sediments. Astrobiology, 7, 951—970.

Canovas III, P. A., Hoehler, T., & Shock, E. L. (2017). Geochemical bioenergetics during low- temperature serpentinization: An example from the Samailophiolite, Sultanate of Oman. JGR Biogeosciences, 122, 1821—1847.

Chakmazyan, K. V. (2016). Changes in microbial biomass structure of soils under conditions of natural accumulation and emission of hydro-gen: Candidate’s thesis. Moscow, 113 p. (in Rus¬sian).

Chapelle, F., O’Neill, K., Bradley, P. M., VletlK’, B. A., Ciufo, S. A., Knobel, L. L., & Lov¬¬ley, D. R. (2002). A hydrogen-based subsur¬face microbial community dominated by metha¬no¬gens. Nature, 415, 312—315.

Dzaugis, M. E., Spivack, A. J., Dunlea, A. G., Murray, R. W., & D’Hondt, S. (2016). Radiolytic hydrogen production in the subseafloor basaltic aquifer. Frontiers in Microbiology, 7, 76.

Dey, G. R., Kishore, K., Moorthy, P. N., Ram¬shesh, V., Srivasteva, S. B., & Thomas, V. G. (1990). Water radiolysis at high temperatures and pressures. Bombay: Bhabha Atomic Research Centre, 27 p.

Donze, F.-V., Truche, L., ShekariNamin, P., Lefeuvre, N., & Bazarkina, E. F. (2020).Migration of Natural Hydrogen from Deep-Seated Sources in the São Francisco Basin, Brazil. Geosciences, 10, 346. geosciences10090346.

Gilat, A. L., & Vol, A. (2005). Primordial hydro-gen-helium degassing, an overlooked major energy source for internal terrestrial processes. HAIT Journal of Science and Engineering B, 2(1-2), 125—167.

Gilat, A. L., & Vol, A. (2012).Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes. Geoscience Frontiers, 3(6), 911—921.

Gufeld, I. L. (2012).Geological consequences of amorphization of the lithosphere and upper mantle structures, caused by hydrogen degassing. Geodinamika i tektonofizika, 3(4), 417—435. (in Russian).

Gufeld, I. L. (2013). On deep degassing and structure of lithosphere and upper mantle. Glubinnaya neft, 1(2), 171—188 (in Russian).

Hellevang, H., Huang, S., & Thorseth, I. H. (2011). The Potential for Low-Temperature Abiotic Hydrogen Generation and a Hydrogen-Driven Deep Biosphere. Astrobiology, 11(7), 711—724. ast.2010.0559.

Holm, N. G., Oze, C., Mousis, O., Waite, J. H., & Guilbert-Lepoutre, A. (2015). Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets).Astrobiology, 15(7), 587—600. 10.1089/ast. 2014.1188.

Huang, R., Lin, C., Sun, W., Ding, X., Zhan, W., & Zhu, J. (2017). The production of iron oxi-de during peridotite serpentinization: Influ-ence of pyroxene. Geoscience Frontiers, 8(6), 1311—1321. j.gsf.2017. 01.001.

Ikuta, D., Ohtani, E., Sano-Furakawa, A., Shiba-zaki, Y., Terasaki, H., Yuan, L., & Hattori, T. (2019).Interstitial hydrogen atoms in face-centered cubic iron in the Earth’s core. Scientific Reports, 9, 7108. s41598-019-43601-z.

Jones, V. T., & Pirkle, R. J. (1981). Helium and hydrogen soil gas anomalies associated with deep or active faults: Proc. of the 1981 American Chemical Society Annual Meeting, Atlanta, GA.

Kelley, D. S., Karson, J. A., Blackman, D. K., Fruh-Green, G. L., Butterfield, D. A., Lilley, M. D., Olson, E. J., Schrenk, M. O., Roe, K. K., Lebon, G. T., & Rivizzigno, P. (2001). Anoff-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30ON. Nature, 412, 127—128.

Klein, F., Bach, W., Jons, N., McCollom, T., Moskowitz, B., & Berquo, T. (2009). Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15N on the Mid Atlantic Ridge. Geochimica et Cosmochimica Acta, 73(22), 6868—6893.

Klein, F., Grozeva, N. G., & Seewald, I. S. (2019).Abiotic methane synthesis and serpentinization in olivine — hosted fluid inclusions. Proc. of the National Academy of Sciences of the USA, 116(36), 17666—17672. Retrieved from

Konn, C., Charlou, J. L., Holm, N. G., & Mousis, O. (2015).The production of Methane, Hydrogen and Organic Compounds in Ultramafic — Hosted Hydrothermal Vents of the Mid-Atlantic Ridge. Astrobiology, 15(5), 381—399.

Kronig, R., de Boer, J., & Korringa, J. (1946). On the internal constitution of the Earth.Physica, 12(5), 245—256. -8914(46)80065-X.

Larin, V. N. (1993). Hydridic Earth: The New Geo-logy of Our Primordially Hydrogen-rich Planet. Alberta: Polar Publishing, 247 p.

Larin, V. N. (2005). Our Earth (origin, composition, structure and evolution of primordially hydridic Earth). Moscow: Agar, 247 p. (in Russian).

Larin, N. V., Zgonnik, V., Rodina, S., Deville, E., Prinzhofer, A., & Larin, V. N. (2015). Natural mo-lecular hydrogen seepage associated with sur-ficial, rounded depressions on the European Craton in Russia. Natural Resources Research, 24, 369—38.

Leong, J. A. M., & Shock, E. L. (2020).Thermodynamic constraints on the geochemistry of low- temperature, continental, serpentiniza¬ti¬on-generated fluids. American Journal of Science, 320(3), 185—235. 10.2475/ 03.2020.01.

Letnikov, F. A. (2001). Ultradeep fluid systems of the Earth and problems of ore formation. Geologiya rudnykh mestorozhdeniy, 43(4), 291—307 (in Russian).

Letnikov, F. A. (2015). Deep fluids of the con-tinental lithosphere. Proceedings of the All-Russia conference «Fluid regime of endogenic processes in the continental lithosphere» (pp. 11—22). Irkutsk: Institute of the Earth’s Crust SB RAS (in Russian).

Lin, Li-H., Hall, J., Lippmann-Pipke, J., Ward, J. A., Sherwood Lollar, B., DeFlaun, M., Rothmel, R., Moser, M., Gihring, T. M., Mislowack, B., & Onstott, T. C. (2005). Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochemistry, Geophysics, Geosystems, 6(7), 3—13. 10.1029/2004GC000907.

Lukin, A. E., & Shestopalov, V. M. (2021). Tectono-magmatogenering structures in zones of increased geodynamic instability as priority objects for exploration of hydrogen fields. Geofizicheskiy Zhurnal, 43(4), 3—43 (in Russian).

Malvoisin, B., Brunet, F., Carlut, J., Roumon, S., & Cannat, M. (2012). Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration. Journal of Geophysical Research: Solid Earth, 117, B04102.

Malvoisin, B., Brantut, N., & Kaczmarek, M. (2017). Control of serpentinisation rate by reaction-induced cracking. Earth and Planetary Science Letters, 476, 143—152. /10.1016/j.epsl.2017.07.042.

Marakushev, A. A. (1999). Origin of the Earth and nature of its endogenous activity. Moscow: Nauka, 253 p. (in Russian).

Mayhew, L. E., Ellison, E. T., McCollom, T. M., Trainor, T. P., & Templeton, A. S. (2013). Hydrogen generation from low-temperature water-rock reactions. Nature Geoscience, 6(6), 478—484.

McCollom, T. M., & Bach, W. (2009).Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochimica et Cosmochimica Acta , 73(3), 856—875. j.gca.2008.10.032.

McCollom, T. M., & Seewald, L. S. (2013). Serpen-tinites, hydrogen and life. Elements, 9(2), 129— 134. 129.

McCollom, T. M., Klein, F., Robbins, M., Moskowitz, B., Berquo, T. S., Jons, N., Bach, W., & Templeton, A. (2016). Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. Geochimica et Cosmochimica Acta, 181(15), 175—200. i.gca.2016.03.002.

Molchanov, V. I. (1981). Hydrogen generation in lithogenesis. Novosibirsk: Nauka, 142 p. (in Russian).

Moody, J. B. (1976). Serpentinization: a review. Lithos, 9(2), 125—138. 0024-4937(76)90030-X.

Murphy, C. A. (2016). Hydrogen in the Earth’s Core: Review of the Structural, Elastic and Thermodynamic Properties of Iron-Hydrogen Alloys. In Deep Earth: Physics and Chemistry of the Lower Mantle and Core (pp. 253—264). https://

Neal, С., & Stanger, G. (1983). Hydrogen generation from mantle source rocks in Oman. Earthand Planetary Science Letters, 66, 315—320.

Parkes, R. J., Linnane, C. D., Webster, G., Sass, H., Weightman, A. J., Hornibrook, E. R. C., & Horsfield, B. (2011). Prokaryotes stimulate mineral H2 formation for the deep biosphere and subsequent thermogenic activity. Geology, 39(3), 219—222.

Parnell, J., & Blamey, N. (2017).Global hydrogen reservoirs in basement and basins. Geochemical Transactions, 18(1).

Pashova, N. T., Krivosheya, V. M., Marina, N. V., Fedorchuk, N. I. (2013). Ring structures on the northern coastal zone of DDZ — deep migration channels of explosives — analogues of «GAS HIMNEYS». Azov-Black Sea landfill for the study of geodynamics and fluid dynamic of oil and gas fields. Abstracts of the XI International Conference: «Crimea-2013», Simferopol (pp. 32—33).

Polyanskaya, L. M., Sukhanova, N. I., Chakmazyan, K. V., & Zvyagintsev, D. G. (2014). Specific features of the structure of microbial biomass in soils of annular mesodepressions in Lipetsk and Volgograd oblasts. Eurasian Soil Science, 47(9), 903—909.

Portnov, A. V. (2010). Volcanoes — natural hyd-rogen fields. Promyshlennye vedomosti, (10—12). Retrieved from articles/article.phtml?id=2015 (in Russian).

Proskurowski, G., Lilley, M. D., Kelley, D. S., & Olson, E. J. (2006). Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer. Chemical Geology, 229, 331—343.

Rumyantsev, V. N. (2016). Hydrogen in the Earth’s outer core and its role in the deep Earth geo-dynamics. Geodynamics and Tectonophysics, 7(1), 119—135. 16-7-1-0200.

Russell, M. J., Hall, A. J., & Martin, W. (2010). Serpentinization as a source of energy at the ori-gin of life. Geobiology, 8(5), 355—371. https://

Sato, M., Sutton, A. L., McGee, K. A., & Russel-Robinson, S. (1986). Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980—1984. Journal of Geophysical Research, 91(B12), 1315—1326.

Semenenko, N. P. (1990). Oxygen-hydrogen model of the Earth. Kiev: Naukova Dumka, 240 p. (in Russian).

Seyfried, W. E., Foustoukos, D. I., & Qi, F. (2007). Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. Geochimica et Cosmochimica Acta , 71(15), 3872—3886.

Sherwood Lollar, B., Onstott, T., Lacrampe-Cou-loume, G., & Ballentine, C. (2014).The contribution of the Precambrian continental litho-sphere to global H2 production. Nature, 516, 379—382. nature14017.

Shestopalov, V. M. (2020). On geological hydrogen. Geophysical Journal, 42(6), 3—35. (in Russian).

Shestopalov, V. M., Koliabina, I. L., Ponomarenko, O. M., Lukin, A. Ye., & Rud, А. D. (2021).Thermodynamic assessment of the possibility of olivine interaction with deep-seated hydrogen. International Journal of Hydrogen Energy.

Shestopalov, V. M., & Kolyabina, I. L. (2019). Preliminary results of analysis of possibility for serpentinization of olivine in the absence of water: Abstracts of scientific conference «Achievements and development of geological science in Ukraine» (Vol. 1, pp. 120—121). Kyiv: Publ. of the Institute of Geochemistry, Mineralogy and Ore Formation (in Ukrainian).

Sleep, N. H., Meibom, A., Fridriksson, Th., Cole-man, R. G., & Bird, D. K. (2004). H2-rich fluids from serpentinization: geochemical and bio-tic implications. Proceedings of the National Academy of Sciences of the USA, 101(35), 818— 823.

Šrámek, O., McDonough, W. F., Kite, E. S., Lekić, V., Dye, S. T., & Zhong, S. (2013). Geophysical and geochemical constraints on geoneutrino fluxes from Earth’s mantle. Earth and Planetary Science Letters, 361, 356—366.

Starostenko, V. I., Janik, T., Yegorova, T., Farfuliak, L., Czuba, W., Њroda, P., Thybo, H., Artemieva, I., Sosson, M., Volfman, Yu., Kolomiyets, K., Lysynchuk, D., Omelchenko, V., Gryn, D., Guterch, A., Komminaho, K., Legostaeva, O., Tiira, T., & Tolkunov, A. (2015). Seismic model of the crust and upper mantle in the Scythian Platform: the DOBRE-5 profile across the northwestern Black Sea and the Crimean Peninsula. Geophysical Journal International, 201, 406—428. gji/ggv018.

Stevenson, D. I. (1977). Hydrogen in the Earth’s core. Nature, 268, 130—131. 1038/268130a0.

Su, Q., Zeller, E., & Angino, E. E. (1992). Inducing action of hydrogen migrating along faults on earthquakes. Acta Seismologica Sinica, 5(4), 841—847.

Sugisaki, R., Anno, H., Adashi, M., & Ui, H. (1980). Geochemical features of gases and rocks along active faults. Geochemical Journal, 14(3), 101—112. geochemj.14.101.

Sukhanova, N. I., Trofimov, S. Y., Polyanskaya, L. M., Larin, N. V., & Larin, V. N. (2013). Changes in the humus status and the structure of the microbial biomass in hydrogen exhalation places. Pochvovedenie, (2), 1—11. https://doi. org/10.7868/S0032180X13020147 (in Russian).

Syvorotkin, V. L. (2002). Deep Earth degassing and global catastrophes. Moscow: Geoinformtsentr, 250 p. (in Russian).

Takai, K., Gamo, T., Tsunogai, U., Nakayama, N., Hirayama, H., Nealson, K. H., & Horikoshi, K. (2004). Geochemical and microbiological evidence for a hydrogen-based, hyper-thermo-philic subsurface lithoautotrophic microbial ecosystem (Hyper SLIME) beneath an active deep sea hydrothermal field. Extremophiles, 8, 269—282.

Tian, Z.-Z., Liu, J., Xia, Q.-K., Ingrin, J., Hao, Y.-T., & Christophe, D. (2016).Water concentration profiles in natural mantle orthopyroxenes: A geochronometer for long annealing of xenoliths within magma. Geology, 45, 87—90.

Tsvetkova, T. A., Bugaenko, I. V., & Zaets, L. N. (2017).Seismic visualization of plumes and super-deep fluids in mantle under Ukraine. Geofizicheskiy Zhurnal, 39(4), 42—54. 107506 (in Russian).

Tsvetkova, T. A., Bugaenko, I. V., & Zaets, L. N. (2020). Speed structure of the mantle under the Dnieper-Donets depression and its surrooudings. Pt. II. Geofizicheskiy Zhurnal, 42(3), 145—161. (in Russian).

Turke, A., Nakamura, K., & Bach, W. (2015). Palagonitization of basalt glass in the flanks of midocean ridges: implications for the bioenergetics of oceanic intracrustal ecosystems. Astrobiology, 15, 793—803.

Vovk, I. F. (1987). Radiolytic salt enrichment and brine in the crystalline basement of the East European platform, in Saline Water and Gases in Crystalline Rocks. Geological Association of Canada, Special Paper, 33, 197—210.

Wakita, H., Nakamura, V., Kita, I., Fujii, N., & Notsu, K. (1980). Hydrogen release, new indicator of fault activity. Science, 210, 188—190.

Walshe, J. L. (2006). Degassing of hydrogen from the Earth’s core and related phenomena of the system Earth. Geochimica et Cosmochimica Acta, 70(18), A684—A684.

Wang, X. B., Ouyang, Z. Y., Zhuo, Sh. G., Zhang, M. F., Zheng, G. D., & Wang, Y. L. (2014). Serpentinization, abiogenic organic compounds, and deep life.Science China Earth Sciences, 57(5), 878—887.

Ware, R. N., Roecken, C., & Wyss, M. (1984). The detection and interpretation of hydrogen in fault gases. Pure and Applied Geophysics, 122(2-4), 392—402. F00874607.

Warr, O., Guinta, T., Ballentine, Ch. J., & Sherwood Lollar, B. (2019). Mechanisms and rates of He, Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments. Chemical Geology, 530, 119322. http:

Worman, S. L., Pratson, L. F., Karson, J. A., & Klein, E. M. (2016).Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere. Geophysical Research Letters, 43, 6435—6443. 2016GL069066.

Zgonnik, V. (2020). The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews, 203, 103140.

Zgonnik, V., Beaumont, V., Deville, E., Larin, N., Pillot, D., & Farrell, K. M. (2015). Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA). Progress in Earth and Planetary Sciences, 2,31.

Zhou, X., Du, J., Chen, Z., Cheng, J., Tang, Yi., Yang, L., Xie, C., Cui, Y., Liu, L., Yi, L, Yang, P., & Li, Y. (2010). Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China. Geochemical Transactions, 11, 5. /10.1186/1467-4866-11-5.




How to Cite

Shestopalov, V., Lukin, O. ., Starostenko, V. ., Ponomarenko, O. ., Tsvetkova, T. ., Koliabina, . I. ., Makarenko, O. ., Usenko, O. ., Rud, O. ., Onoprienko, A. ., Saprykin, V. ., & Vardapelian, R. . (2021). Prospects for exploration of hydrogen fields in riftogene structures of platforms (the case of the Dnieper-Donets Aulacogene). Geofizicheskiy Zhurnal, 43(5), 3–18.