On the circulation of hydrogen in the atmosphere and the Earth’s crust

Authors

  • V. V. Gordienko Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gzh.v43i5.244051

Keywords:

sources and sinks of hydrogen, geological hydrogen, prospects for the formation of a field

Abstract

A review of data on sources and sinks of hydrogen of various origins in the atmosphere and in the near-surface part of the Earth’s crust is given (only some cases we are talking about the crust as a whole). Based on the results of the consideration of this information, it was concluded that the influence of underground non-biogenic («geological») hydrogen on the content and balance of gas in the atmosphere, up to the stratosphere, is insignificant. The complexity of the experimental determination of the flow of geological hydrogen, free of biogenic and anthropogenic interference, the influence of the testable excavation, etc. is obvious. Probable sources of deep hydrogen are considered: the remains of magmatic gases (outside the areas of volcanism), metamorphic reactions, and radiolysis of water. The potential for significant H2 flow is only apparent in areas of currently activated faults.

The data on the most powerful suppliers of geological hydrogen — modern active volcanoes and thermal fields are given. The gas circulation scheme of the Avachinsky volcano is built, based on the thermal model. The latter is controlled by data from geothermometers, the results of direct temperature measurements in deep wells, and a velocity model. The possibility of fumaroles carrying unchanged hydrogen from the magma chamber has been shown.

The prospects for the formation of hydrogen deposits are estimated as uncertain. Magmatic and metamorphogenic gas in some areas is formed enough to accumulate a significant deposit over several tens of thousands of years. But the possibility of its preservation during this period or longer raises doubts. Hydrocarbon deposits without material input from great depths can lose reserves in much less time. Higher rocks permeability to hydrogen contributes to much greater gas leakage.

References

Bagriy, I. D., & Kuzmenko, S. A. (2019). Scientific substantiation of the spatial distribution and mapping of anomalous manifestations of hydrogen — the energy raw material of the XXI century. Geologicheskiy Zhurnal, (1), 59—77. https://doi.org/10.30836/igs.1025-6814.2019.1. 159241 (in Russian).

Bogdanov, Yu. A., Bortnikov, N. S., Gurvich, E. G., Lein, A. Yu., Sagalevich, A. M., Vikentyev, I. V. Novikov, G. V., Peresypkin, V. I. (2000). Hydrothermal ore manifestations of the Logachev and Rainbow fields (Mid-Atlantic Ridge) — a new type of ocean rifts hydrothermal deposits. Russian Journal of Earth Sciences, 2(3), 313—326 (in Russian).

Verkhovtsev, V. G. (2008). Modern platform geostructures of Ukraine and dynamics of their development. Extended abstract Doctor¢s thesis (in Ukrainian).

Vovk, I. F. (1982). Brines of crystalline basement shields. Kiev: Naukova Dumka, 163 p. (in Russian).

Voytov, G. I. (1975). Earth’s gas breath. Priroda, (3), 91—98 (in Russian).

Voytov, G. I. (1974). To assess the intensity of gas on the shields (on the butt of the Ukrainian shield). Geologicheskiy Zhurnal, (2), 68—82 (in Ukrainian).

Voytov, G. I. (1986). The chemistry and scale of the modern flow of natural gases in various geostructural zones of the Earth. Zhurnal Vse¬soyuz¬nogo khimicheskogo obshchestva im. D. I. Men¬deleyeva, (31), 533—556 (in Russian).

Voytov, G. I. (1971). On the chemical composition of Krivoy Rog gases. Geokhimiya, (11), 1324— 1331 (in Russian).

Gordienko, V. V. (2019). Earth’s crust of the oceans and strip anomalies of the magnetic field. Geologiya i poleznyye iskopayemyye Mirovogo okeana, (4), 3—35 (in Russian).

Gordienko, V. V. (2017). Thermal processes, geodynamics, deposits. Retrieved from https://ivangord2000.wixsite.com/tectonos (in Russian).

Gordienko, V. V., & Zavgorodnaya, O. V. (1984). Thermal fild of the southeastern part of the Russian plate. Geofizicheskiy Zhurnd, 6(6), 3— 11 (in Russian).

Ivanov, A. V. (2010). Deep geodynamics: process boundaries according to geochemical and petrological data. Geodinamika i tektonofizika, (1), 87—102 (in Russian).

Ikorskiy, S. V., Nivin, V. A., & Pripachkin, V. A. (1992). Geochemistry of gases of endogenous formations. St. Petersburg: Nauka, 179 p. (in Russian).

The infrastructure of the hydrogen network will connect 21 European countries. (2021). Sea|News. Retrieved from https://seanews.ru/ 2021/04/14/ru-infrastruktura-vodorodnoj-seti-obedinit-21-stranu-evropy/ (in Russian).

Kravchenko, O. V., Veligotskiy, D. A., Avramenko, A. N., & Khabibullin, R. A. (2014). Improving the technology of complex impact on productive formations of oil and gas wells. Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiy, (6/5), 3—8. https://doi.org/10.15587/1729-4061. 2014.29316 (in Russian).

Kravchenko, O. V., Suvorova, I. G., Baranov, I. A., Veligotsky, D. A. (2018). Effect of hydrogen on flow and heat transfer in the «fracture—fluid» system. Intehrovani tekhnolohiyi ta enerhozberezhennya, (3), 35—46 (in Russian).

Krayushkin, V. A., Timurziev, A. I., & Shevchenko, N. B. (2018). To the problem of non-biotic (non-biogenic) nature of oil and natural gas: Materials of the 6th Kudryavtsev Readings (pp. 235—238) (in Russian).

Kuzmin, A. (2020.08.25). «Twice wrote to Zelensky». How scientists are looking for hydrogen is the key to the energy of the future. Glavkom. Retrieved from https://glavcom.ua/new_energy/publications/dvichi-pisav-zelenskomu-yak-ukrajinski-vcheni-shukayut-klyuch-do-energetiki-maybutnogo-voden-701046.html (in Ukainian).

Malik, N. A., Zelenskiy, M. E., & Okrugin, V. M. (2017). The temperature and composition of the fumarole gas of the Avachinsky volcano (Kamchatka) in 2013—2016. Vestnik KRAUNTS. Nauki o Zemle, 33(1), 21—32 (in Russian).

Methodological guidelines for determining the technologically necessary irrecoverable gas losses during the creation and operation of gas storage facilities in porous formations. (1996). Moscow: RAOGazprom, 50 p. (in Russian).

Murich, A. T., Reznikov, A. L., Abrazhevich, E. V., & Serdyukov, V. V. (1975). The results of deep drilling in the central part of the Donbass. Sovetskaya geologiya, (8), 125—131 (in Russian).

Nivin, V. A. (2013). Gas components in igneous rocks: geochemical, mineralogical and envi¬ronmental aspects and consequences (for example, intrusive complexes of the Kola pro¬vince): Doctor¢s thesis. Apatity, 354 p. (in Russian).

Nizkous, I. V., Kissling, E., Sanina, I. A., & Gontovaya, L. I. (2006). Speed properties of the lithosphere of the transition zone of the ocean-continent in the Kamchatka region according to seismic tomography. Fizika Zemli, (4), 18—29 (in Russian).

Shestopalov, V. M. (Ed.). (2018). Essays on the degassing of the Earth. Kiev: Іtek service, 632 p. (in Russian).

Petersilye, I. A., & Pripachkin, V. A. (1979). Hydrogen, carbon, nitrogen, and helium in igneous rock gases. Geokhimiya, (7), 1028—1034 (in Russian).

Polevanov, V. P., & Glazyev, S. Yu. (2020). Searches for natural hydrogen deposits in Russia as a basis for integration into a new technological order. Nedropol’zovaniye. ХХI vek, (4), 12—23 (in Russian).

Rodkin, M. V., & Punanova, S. A. (2015). Assessment of the influence of crustal processes on the formation of microelement composition of caustobiolites: Abstracts of 4 Kudryavtsev readings. Moscow: Publ. of the Central Geophysical Expedition (in Russian).

Aiuppa, A., Shinohara, H., Tamburello, G., Giudice, G., Liuzzo, M., & Moretti, R. (2011). Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy. Journal of Geophysical Research, 116, B10204, https://doi.org/10.1029/ 2011JB008461.

Bjornstad, B., McKinley, J., Stevens, T., Rawson, S., & Fredrickson, J. (1994). Generation of hydrogen gas as a result of drilling within the saturated zone. Groundwater Monitoring & Remediation, 14(4), 140—147. https://doi.org/10.1111/j.1745-6592.1994.tb00492.x.

Cannat, M., Fontaine, F. & Escartin, J. (2010). Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. In Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges (Vol. 188, pp. 241—264). https://doi.org/10.1029/2008GM000760.

Constant, P., Chowdhury, S., Pratscher, J., & Conrad, R. (2010). Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative highaffinty [NiFe]-hydrogenase. Environmental Microbiologi, 12(3), 821—829. https://doi.org/10.1111/j.1462-2920.2009.02130.x.

Coveney, R., Goebel, E., Zeller, E., & Dreschhoff, G. (1987). Serpentinization and the Origin of Hydrogen Gas in Kansas. AAPG Bulletin, 71(1). https://doi.org/10.1306/94886D3F-1704-11D7-8645000102C1865D.

Crotogino, F., Donadei, S., Burger, U., & Landinger, H. (2010). Large-Scale Hydrogen Underground Storage for Securing Future Energy Supplies. Proceedings 18th World Hydrogen Energy Conference. Book 4. 45 р.

Cvetković, V., Erić, S., Radivojević, M., & Šarić, K. (2012). Cognate clinopyroxene from Paleogene mantle xenolith-bearing basanite lavas (East Serbia, SE Europe): the role of dissolution of mantle orthopyroxene. Mineralogy and Pet¬ro¬logy, 106(3-4), 131—150. https://doi.org/ 10.1007/s00710-012-0231-9.

Ehhalt, D., & Rohber, F. (2009). The tropospheric cycle of H2: a critical review. Tellus B: Che¬mical and Physical Meteorology, 61(3), 500—535. https://doi.org/10.1111/j.1600-0889.2009. 00416.x.

Final report for executing a study of the effects of hydrogen injection in natural gas networks for the Dutch underground strogates. (2017). Netherlands Enterprise Agency. Hague, Lei¬pzig, Vienna. 66 p.

Gilat, L., & Vol, A. (2012). Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes. Geoscience Frontiers, 3(6), 911—921. https://doi.org/10.1016/j.gsf.2012.03.009.

Guélard, J., Beaumont, V., Rouchon, V., Guyot, F., Pillot, D., Jézéquel, D., Ader, M., Newell, D., & Deville, E. (2017). Natural H2 in Kansas: deep or shallow origin? Geochemistry, Geophysics, Geosystems, 18(5), 1841—1865. https://doi.org/10.1002/2016GC006544.

Holland, H. D. (2002). Volcanic gases, black smokers, and the great oxidation event. Geochimica et Cosmochimica Acta, 66(21), 3811—3826. https://doi.org/10.1016/S0016-7037(02)00950-X.

Holloway, J. R., & O’Day, P. A. (2000). Production of CO2 and H2 by Diking-Eruptive Events at Mid-Ocean Ridges: Implications for Abiotic Organic Synthesis and Global Geochemical Cycling. International Geology Review, 42, 673—683. https://doi.org/10.1080/00206810009465105.

Jähne, B., Münnich, K., Bösinger, R., Dutzi, A., Huber, W., & Libner, P. (1987). On the parameters air-water gas exchange. Journal of Geophysical Research, 92, 1937—1949. https://doi.org/10.1029/JC092iC02p01937.

Kiryukhin, A., Manukhin, Y., Fedotov, S., Lav¬ru¬¬shin, V., Rychkova, N., Ryabinin, G., Po¬ly¬a¬kov, A., & Voronin, P. (2015). Geofluids of Avachinsky-Koryaksky Volcanogenic Basin, Kamchatka, Russia. Proceedings World Geothermal Congress. Melbourne. 11 р.

Konn, С., Charlou, J., Holm, N., & Mousis, O. (2015). The Production of Methane, Hydrogen, and Organic Compounds in Ultramafic-Hosted Hydrothermal Vents of the Mid-Atlantic Rid¬ge. Astrobiology, 15(5), 381—399. https://doi.org/10.1089/ast.2014.1198.

Lilley, M., de Angelis, M., & Gordon, L. (1982). CH4, H2, CO and N2O in submarine hydrothermal vent waters. Nature, 300, 48—50. https://doi.org/10.1038/300048a0.

Lin, L., Hall, J., Lippmann-Pipke, J., Ward, J., Sherwood Lollar, B., DeFlaun, M., Rothmel, R., Moser, D., Gihring, T., Mislowack, B., & Onstott, T. (2005). Radiolytic H2 in continental crust: Nucklear power for deep subsurfase mic¬¬robial communities. Geochemistry, Geo¬phy¬sics, Geosystems, 6(7), 3—13. https://doi.org/10.1029/2004GC000907.

Lippmann, J., Stute, M., Torgersen, T., Moser, D. P., Hall, J., Lin, L., Borcsik, M., Bellamy, R. E. S., & Onstott, T. C. (2003). Dating ultra-deep mi¬ne waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. Geochimica et Cosmochimica Acta, 67(23), 4597—4619. https://doi.org/10.1016/S0016-7037(03)00414-9.

McMahon, P., & Chapelle, F. (1991). Microbial Organic-Acid Production in Aquitard Sediments and Its Role in Aquifer Geochemistry. Nature, 349, 233—235. https://doi.org/10.1038/ 349233a0.

Moussallam, Y., Oppenheimer, C., Aiuppa, A., Giudice, G., Moussallam, M., Kyle, P. (2012). Hydrogen emissions from Erebus volcano, Antarctica. Bulletin of Volcanology, 74, 2109—2120. https://doi.org/10.1007/s00445-012-0649-2.

Moussallam, Y., Tamburello, G., & Peters, N., Apaza, F., Schipper, I, Curtis, A., Aiuppa, A., Masias, P., Boichu, M., Bauduin, S., Barnie, T., Bani, P., Giudice, G., & Moussallam, M. (2017). Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes; implications for the volatile budget of the central volcanic zone. Journal of Volcanology and Geo¬thermal Research, 343, 181—191. https://doi.org/10.1016/j.jvolgeores.2017.06.027.

Novelli, P. C., Lang, P. M., Masarie, K. A., Hurst, D. F., & Myers, R. (1999). Molecular hyd¬rogen in the troposphere: global distribu¬ti¬on and budget. Journal of Geophysical Research, 104, 30427—30444. https://doi.org/10.1029/ 1999JD900788.

Onstott, T., Phelps, T. J., Colwell, F. S., Ringeberg, D., White, D. C., & Boone, D. R. (1998). Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville basin, Virginia. Geomicrobiology Journal, 15(4), 353—385. https://doi.org/10.1080/01490459809378088.

Parnell, J., & Blamey, N. (2017). Global hydrogen reservoirs in basement and basins. Geochemical Transactions, 18, 2. https://doi.org/10.1186/s12932-017-0041-4.

Pfeiffer, W., Beyer, C., & Bauer, S. (2017). Hydrogen storage in a heterogeneous sandstone formation: dimensioning and induced hydraulic effects. Petroleum Geoscience, 23(3), 315—326. https://doi.org/10.1144/petgeo2016-050.

Pieterse, G. (2012). Modelling the global tropospheric molecular hydrogen cycle. Netherlands, 198 р.

Pieterse, G., Krol, M. C., Batenburg, A. M., Steele, L. P., Krummel, P. B., Langenfelds, R. L., & Röckmann, T. (2011). Global modelling of H2 mixing ratios and isotopic compositions with the TM5 model. Atmospheric Chemistry and Physics, 11(14), 7001—7026. https://doi.org/10.5194/acp-11-7001-2011.

Savary, V., & Pagel, М. (1997). The effects of water radiolysis on local redox conditions in the Oklo, Gabon, natural fission reactors 10 and 16. Geochimica et Cosmochimica Acta, 61(21), 4479—4494. https://doi.org/10.1016/S0016-7037(97)00261-5.

Sherwood Lollar, B., Onstott, T., Lacrampe-Couloume, G., & Ballentine, C. (2014). The contribution of the Precambrian continental lithosphere to global H2 production. Nature, 516, 379—382. doi:10.1038/nature14017.

Sigurdsson, H., Houghton, B., Rymer, H., Stix, J., McNutt, S. (1999). Encyclopedia of volcanoes. Academic Press, 1417 p.

Sleep, N., & Bird, D. (2007). Niches of the pre-photosynthetic biosphere and geologic preservation of Earth’s earliest ecology. Geo¬biolo¬gy, 5,101—117. doi:10.1111/j.1472-4669.2007. 00105.x.

Tamanyu, S., & Fujimoto, K. (2005). Hydrothermal and Heat Source Model for the Kakkonda Geothermal Field, Japan. Proceedings World Geothermal Congress, Antalya (pp. 24—29).

Tarkowski, R. (2019). Underground hydrogen storage: Characteristics and prospects. Renewable and Sustainable Energy Reviews, 105, 86—94. https://doi.org/10.1016/j.rser.2019.01.051.

Tassi, F., Vaselli, O., Capaccioni, B., Macias, J., Nencetti, A., Montegrossi, G., & Magro, G. (2003). Chemical composition of fumarolic gases and spring discharges from El Chicho’n volcano, Mexico: causes and implications of the changes detected over the period 1998—2000. Journal of Volcanology and Geothermal Researches, 123, 105—121. https://doi.org/10.1016/S0377-0273(03)00031-3.

Vovk, I. F. (1987). Radiolytic salt enrichment and brine in the crystalline basement of the east European platform, in Saline Water and Gases in Crystalline Rocks. Geol. Assoc. Cannada Spec. Paper, 33, 197—210.

Xiao, X., Prinn, R. G., Simmonds, P. G., Steele, L. P., & Novelli, P. (2007). Optimal estimation of the soil uptake of molecular hydrogen from the Advanced Global Atmospheric Gases Ex¬pe¬riments and other measurements. Journal of Geophysical Research, 112, D07303. doi: 10.1029/2006JD007241.

Warneck, P. (1988). Chemistry of the Natural Atmosphere. San Diego: Academic Press. International Geophysics Series, 41. 757 p.

Welhan, J., & Craig, H. (1979). Methane and hydrogen in East Pacific rise hydrothermal fluids. Geophysical Research Letters, 6(11), 11, 829—831. https://doi.org/10.1029/GL006i011p00829.

Worman, S. L., Pratson, L. F., Karson, J. A., & Klein, E. M. (2016). Global rate and dis¬tri¬bu¬tion of H2 gas produced by serpentinization within oceanic lithosphere. Geo¬phy¬sical Re¬search Letters, 43, 6435—6443. doi:10.1002/ 2016GL069066.

Zgonnik, V. (2020). The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews, 203, 103140. https://doi.org/10.1016/j.earscirev.2020.103140.

Published

2021-11-24

How to Cite

Gordienko, V. V. . (2021). On the circulation of hydrogen in the atmosphere and the Earth’s crust. Geofizičeskij žurnal, 43(5), 35–59. https://doi.org/10.24028/gzh.v43i5.244051

Issue

Section

Articles