Palаeomagnetism of the Vendian traps of Volyn, southwestern margin of the East European platform. P. 1: palаeomagnetic directions and poles


  • V. G. Bakhmutov Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • I.B. Poliachenko Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • S.I. Cherkes Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • V.V. Shcherbakova Geophysical observatory Borok, Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Russian Federation
  • D.V. Hlavatskyi Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine



paleomagnetism, Vendian, Volyn traps


In Earth’s geological evolution the Vendian is significant because: 1) it preceded the «Cambrian Evolutionary explosion» when the multicellular organisms became suddenly much more diverse; 2) it is associated with the global tectonic and palaeogeographic restructuring of supercontinents, a change in geomagnetic field generation and other global processes affecting different layers of the Earth. At the same time, recent publications indicate an extremely irregular behavior of the geomagnetic field in the Vendian, which significantly differs from the recent regime of the geomagnetic field generation. New information on the configuration and magnitude of the geomagnetic field is crucial for understanding the reasons that can cause different modes of geodynamo. The article describes the new results of palaeomagnetic studies of the Volyn traps — basalts and tuffs of the Volyn series with ages about 560—580 My. The determined palaeodirections and palaeopoles are in good agreement with the previously published data of other authors and substantially complement them. The ChRM-component of «low-titanium» basalts was isolated in high-temperature (>500 °C) and characterized as primary. The same samples were used for palaeointensity determinations which showed the extremely low values of the geomagnetic field — an order of magnitude lower than the present one. The ChRM-component of «high-titanium» basalts was yielded in the temperature range of 200—400 °C. No results were obtained from palaeointensity experiments, and the complex nature of remanent magnetization remains unclear. The new data are compared with the palaeo-magnetic data of the Vendian—Early Cambrian poles of the East European Platform determined by other authors. To test the hypothesis of an anomalous Ediacaran magnetic field characterized by a low dipole moment and a high inversion frequency, more data are necessary. These data can be obtained from the studies of a stratigraphically more complete section of the Volyn traps opened by boreholes. These results will be presented in the next part of the article.


Velikanov, V.A., & Korenchuk, L.V. (1997). Phases of magmatism and their relationship with sedimentation in the Late Precambrian (Riphean-Vendian) of Volyn-Podolia. Geologicheskiy Zhurnal, (1-2), 124—130 (in Russian).

Veselovskiy, R.V., Konstantinov, K.M., Latyshev, A.V., & Fetisova, A.M. (2012). Paleomagnetism of subvolcanic traps of the northern Siberian platform: some geological and methodological implications. Fizika Zemli, (9-10), 74—87 (in Russian).

Glevasskaya, A.M., Kravchenko, S.N., & Kosovskiy, Ya.A. (2006). Magnetostratigraphy of traps from southwestern margin of the East European Craton. Geofizicheskiy Zhurnal, 28(4), 121—130 (in Russian).

Glevasskaya, A.M., Mikhaylova, N.P., & Kravchenko, S.N. (2000). Paleomagnetism of the Volhynian and Mogilev-podolian series of the Vendian of southwestern part of East-European platform. Geofizicheskiy Zhurnal, 22(2), 3—18 (in Russian).

Iosifidi, A.G., Mikhaylova, V.A., Sal'naya, N.V., & Khramov, A.N. (2012). Paleomagnetism of sedimentary rocks of the Asha group of the western slope of the southern Urals: new data. Neftegazovaya geologiya. Teoriya i praktika, 7(4). Retrieved from (in Russian).

Latyshev, A.V., Veselovskiy, R.V., Ivanov, A.V., Fetisova, A.M., & Pavlov, V.E. (2013). Evidence of short intense peaks of magmatic activity in the south of the Siberian platform (Angara-Taseeva depression) based on the results of paleomagnetic studies. Fizika Zemli, (6), 77—90 (in Russian).

Melnychuk, V.G. (2009a). Bialowieza-Podolia trap complex of the lower Vendian and its copper content. Heolohichnyy Zhurnal, (4), 59—68 (in Ukrainian).

Melnychuk, V.G. (2009b). Upper-Pripyat trap complex of the Lower Vendian and its copper content. Heolohichnyy Zhurnal, (3), 14—22 (in Ukrainian).

Melnychuk, V.G. (2009c). Western Bug trap complex and its copper content. Heolohichnyy Zhurnal, (1), 42—49 (in Ukrainian).

Melnychuk, V.G. (2010). Evolutionary model of Early Vendian trap magmatism in the southwestern part of the Eastern European platform. Heolohichnyy Zhurnal, (1), 77—85 (in Ukrainian).

Metelkin, D.V., Lavrenchuk, A.V., & Mikhaltsov, N.E. (2019). Could the Norilsk region dolerite sills have recorded geomagnetic field reversals? Results of mathematical modeling. Fizika Zemli, (6), 24—33 (in Russian).

Mikhaltsov, N.E., Kazanskiy, A.Yu., Ryabov, V.V., Shevko, A.Ya., Kuprish, O.V., & Bragin, V.Yu. (2012). Paleomagnetism of trap basalts in the northwestern Siberian craton, from core data. Geologiya i geofizika, 53(11), 1595—1613 (in Russian).

Nosova, A.A., Veretennikov, N.V., & Levskiy, L.K. (2005). The nature of the mantle source and the features of crustal contamination of the Neoproterozoic traps of the Volyn province (Nd- and Sr-isotope and geochemical data). Doklady RAN, 400(4), 1—5 (in Russian).

Semenenko, N.P. (Ed.). (1975). Criteria for predicting deposits of the Ukrainian Shield and its frame. Kiev: Naukova Dumka (in Russian).

Staritskiy, Yu.G. (Ed.). (1981). History of development and minerageny of the cover of the Russian Platform. Moscow: Nedra (in Russian).

Pavlov, V.E., Fluto, F., Veselovskiy, R.V., Fetisova, A.M., & Latyshev, A.V. (2011). Secular geomagnetic variations and volcanic pulses in Permian-Triassic trap basalts of the Noril’sk and Maimecha-Kotui provinces. Fizika Zemli, (5), 35—50 (in Russian).

Pavlov, V.E., Pasenko, A.M., Shatsillo, A.V., Powerman, V.I., Malyshev, S.V., & Shcherbakova, V.V. (2018). Physics of the Solid Earth. Systematics of Early Cambrian Paleomagnetic Directions from the Northern and Eastern Regions of the Siberian Platform and the Problem of an Anomalous Geomagnetic Field in the Time Vicinity of the Proterozoic-Phanerozoic Boundary. Fizika Zemli, (5), 122—146. (in Russian).

Postnikova, N.E. (1997). Upper Precambrian of the Russian Plate and its oil content. Moscow: Nedra, 221 p. (in Russian).

Savchenko, N.A., Bernadskaya, L.G., Dolgova, V.I., Buturlinov, N.V., Bugaenko, V.N., Semka, V.A., Bondarenko, V.G., & Plakhotnyy, L.G. (1984). Paleovolcanism of Ukraine. Kiev: Naukova Dumka, 252 p. (in Russian).

Gozhyk P.F. (Ed.). (2013). Stratigraphy of Upper Proterozoic and Phanerozoic of Ukraine (Vol. 1). Stratigraphy of Upper Proterozoic, Paleozoic and Mesozoic of Ukraine. Kyiv: Logos, 637 p. (in Ukrainian).

Shatsillo, A.V., Rud’ko, S.V., Latysheva, I.V., Rud’ko, D.V., Fedyukin, I.V., Powerman, V.I., & Kuznetsov, N.B. (2020). A Devious Equatorial Dipole Hypothesis: on the Low-Latitude Glaciations Problem and Geomagnetic Field Configuration in Late Precambrian. Fizika Zemli, (6), 113—134. (in Russian).

Shumlyanskyy, L.V., Andreasson, P.G., Melnychuk, V.G., & Derevska, K.І. (2006). Age of basalt formation of Volhyn trap formation according to previous results of zircon study by ion-ion microprobe method. Heokhimiia i rudoutvorennia, (24), 21—29 (in Ukrainian).

Shumlyanskyy, L.V., & Derevska, K.І. (2001). The first Sm-Nd and Rb-Sr isotope-geochemical data on the Vendian basalts of Volhynia. In Naukovi pratsi Instytututu fundamentalnykh doslidzhen (pp. 67—75). Kyiv: Znannya (in Ukrainian).

Abrajevitch, A., & Van der Voo, R. (2010). Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis. Earth and Planetary Science Letters, 293, 164—170. 2010.02.038.

Bazhenov, M.L., Levashova, N.M., Meert, J.G., Golovanova, I.V., Danukalov, K.N., & Fedorova, N.M. (2016). Late Ediacaran magnetostratigraphy of Baltica: Evidence for Magne-tic Field Hyperactivity? Earth and Planetary Science Letters, 435, 124—135. 10.1016/j.epsl.2015.12.015.

Biggin, A.J., Steinberger, B., Aubert, J., Suttie, N., Holme, R., Torsvik, T.H., & van Hinsbergen, D.J.J. (2012). Possible links between long-term geomagnetic variations and whole-mantle convection processes. Nature Geoscience, 5(8), 526—533.

Bono, R.K., Tarduno, J.A., Nimmo, F., & Cottrell, R.D. (2019). Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. Nature Geoscience, 12, 143—147.

Bryan, S.E., & Ernst, R.E. (2008). Revised definition of large igneous provinces (LIPs). Earth-Science Reviews, 86, 175—202. 10.1016/j.earscirev.2007.08.008.

Chadima, M., & Hrouda, F. (2006). Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Travaux Geophysiques, 27, 20—21.

Chadima, M. & Jelнnek, V. (2008). Anisoft 4.2. Anisotropy data browser. Contributions to Geophysics and Geodesy, 38, 41.

Compston, W., Sambridge, M.S., Reinfrank, R.F., Moczydeowska, M., Vidal, G., & Claesson, S. (1995). Numerical ages of volcanic rocks and the earliest faunal zone within the Late Precambrian of east Poland. Journal of the Geological Society, 152(4), 599—611.

Elming, S.A., Kravchenko, S.N., Layer, P., Rusakov, O.M., Glevasskaya, A.M., Mikhailova, N.P., & Bachtadse, V. (2007). Palaeomagnetism and 40Ar/39Ar age determinations of the Ediacaran traps from the southwestern margin of the East European Craton, Ukraine: relevance to the Rodinia break-up. Journal of the Geologi-cal Society, 164(5), 969—982.

Fedorova, N.M., Levashova, N.M., Meert, J.G., Maslov, A.V., & Krupenin, M.T. (2014). New paleomagnetic data on baltica based on upper ediacaran deposits on the western slope of the Middle Urals. Doklady Earth Sciences, 456(1), 512—516. 8334x14050134.

Fedorova, N.M., Bazhenov, M.L., Meert, J.G., & Kuznetsov, N.B. (2016). Ediacaran-Cambrian paleogeography of Baltica: A paleomagnetic view from a diamond pit on the White Sea east coast. Lithosphere, 8(5), 564—573.

Golovanova, I.V., Danukalov, K.N., Kozlov, V.I., Puchkov, V.N., Pavlov, V.E., Gallet, Y.M., Levashova, N.M., Sirota G.S., Khairullin R.R., Bazhenov, M.L. (2011). Paleomagnetism of the Upper Vendian Basu formation of the Bashkirian Meganticlinorium revisited. Izvestiya, Physics of the Solid Earth, 47(7), 623—635.

Halls, H. C., Lovette, A., Hamilton, M., & Sцderlund, U. (2015). A paleomagnetic and U-Pb geochronology study of the western end of the Grenville dyke swarm: Rapid changes in paleomagnetic field direction at ca. 585 Ma related to polarity reversals? Precambrian Research, 257, 137—166.

Heunemann, C., Krasa, D., Soffel, H., Gurevitch, E., & Bachtadse, V. (2004). Directions and intensities of the Earth’s magnetic field during a reversal: results from the Permo-Triassic Siberian trap basalts, Russia. Earth and Planetary Science Letters, 218(1-2), 197—213.

Iglesia Llanos, M.P., Tait, J.A., Popov, V., Abal-massova, A. (2005). Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic—Early Palaeozoic. Earth and Planetary Science Letters, 240(3-4), 732—747. https: //

Iosifidi, A.G., Bachtadse, V., Khramov, A. & Kuz-netsova, A. (2000). Palaeomagnetic data for Vendian basalts from Ukraine. In V.N. Troyan et al. (Eds), 3rd International Conference on Problems of Geocosmos, Abstracts Volume, St. Petersburg (pp. 74—75).

Iosifidi, A.G. & Khramov, A.N. (2005). Multicomponent magnetization of Vendian sedimentary rocks in Podolia, Ukraine. Russian Journal of Earth Sciences, 7, 1—14.

Kamo, S.L., Czamanske, G.K., Amelin, Yu., Fedorenko, V.A., Davis, D.W., & Trofimov V.R. (2003). Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters, 214(1-2), 75—91.

Kirschvink, J.L., Ripperdan, R.L. (1997). Evidence for a Large-Scale Reorganization of Early Cambrian Continental Masses by Inertial Interchange True Polar Wander. Science, 277(5325), 541—545.

Kirschvink, J.L. (1980). The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International, 62(3), 699—718.

Klein, R., Salminen, J., & Mertanen, S. (2015). Baltica during the Ediacaran and Cambrian: A paleomagnetic study of Hailuoto sediments in Finland. Precambrian Research, 267, 94—105.

Kuzmenkova, O.F., Shumlyansky, L.V., Nosova, A.A., Voskoboynikova, T.V., & Grakovich, I.J. (2011). Petrology and correlation of trap formations of the Vendian in the adjacent areas of Belarus and Ukraine. Litasfera, 2(35), 3—11.

Levashova, N.M., Bazhenov, M.L., Meert, J.G., Danukalov, K.N., Golovanova, I.V., Kuznetsov, N.B., & Fedorova, N.M. (2015). Paleomagnetism of upper Ediacaran clastics from the South Urals: Implications to paleogeography of Baltica and the opening of the Iapetus Ocean. Gondwana

Research, 28(1), 191—208.

Levashova, N.M., Bazhenov, M.L., Meert, J.G., Kuznetsov, N.B., Golovanova, I.V., Danukalov, K.N., & Fedorova, N.M. (2013). Paleogeography of Baltica in the Ediacaran: Paleomagnetic and geochronological data from the clastic Zigan Formation, South Urals. Precambrian Research, 236, 16—30.

Lubnina, N.V., Pisarevsky, S.A., Puchkov, V.N., Kozlov, V.I., & Sergeeva, N.D. (2014). New paleomagnetic data from Late Neoproterozoic sedimentary successions in Southern Urals, Russia: implications for the Late Neoproterozoic paleogeography of the Iapetan realm. International Journal of Earth Sciences, 103(5), 1317—1334.

Meert, J.G. (2014). Ediacaran-Early Ordovician paleomagnetism of Baltica: A review. Gondwana Research, 25(1), 159—169.

Meert, J.G. & Lieberman, B.S. (2004). A palaeomagnetic and palaeobiogeographical perspective on Latest Neoproterozoic and Early Cambrian tectonic events. Journal of the Geological Society, London, 161, 477—487.

Meert, J.G., Levashova, N.M., Bazhenov, M.L., & Landing, E. (2016). Rapid changes of magnetic field polarity in the Late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Research, 34, 149—57.

Meert, J.G., Torsvik, T.H., Eide, E.A., & Dahlgren, S. (1998). Tectonic Significance of the Fen Province, S. Norway: Constraints from Geochronology and Paleomagnetism. The Journal of Geology, 106(5), 553—564.

Nawrocki, J., Boguckyj, A., & Katinas, V. (2004). New Late Vendian palaeogeography of Baltica and the TESZ. Geological Quarterly, 48(4), 309—316.

Pisarevsky, S.A., Komissarova, R.A., & Khramov, A.N. (2001). Reply to comment by J.G. Meert and, R. Van der Voo on «New palaeomagnetic result from Vendian red sediments in Cisbaikalia and the problem of the relationship of Siberia and Laurentia in the Vendian». Geophysical Journal International, 146(3), 871—873.

Piper, J.D.A. (1988). Palaeomagnetism of (Late Vendian—Earliest Cambrian) minor alkaline intrusions, Fen Complex, southeast Norway. Earth and Planetary Science Letters, 90(4), 422—430.

Popov, V., Iosifidi, A., Khramov, A., Tait, J., & Bachtadse, V. (2002). Paleomagnetism of Upper Vendian sediments from the Winter Coast, White Sea region, Russia: Implications for the paleogeography of Baltica during Neoproterozoic times. Journal of Geophysical Research: Solid Earth, 107(B11), EPM 10-1—EPM 10-8.

Popov, V.V., Khramov, A.N., & Bachtadse, V. (2005). Palaeomagnetism, magnetic stratigraphy, and petromagnetism of the Upper Vendian sedimentary rocks in the sections of the Zolotitsa River and in the Verkhotina Hole, Winter Coast of the White Sea, Russia. Russian Journal of Earth-Sciences, 7(2), 115—143.

Shcherbakova, V.V., Bakhmutov, V.G., Thallner, D., Shcherbakov, V.P., Zhidkov, G.V., & Biggin, A.J. (2020). Ultra-low palaeointensities from East European Craton, Ukraine support a globally anomalous palaeomagnetic field in the Ediacaran. Geophysical Journal International, 220, 1920—1946.

Shumlyanskyy, L.V., & Andrйasson, P.G. (2004). New geochemical and geochronological data from the Volyn Flood Basalt in Ukraine and correlation with large igneous events in Baltoscandia (Abstract). GFF, 126, 85—86.

Shumlyanskyy, L., Nosova, A., Billstrцm, K., Sцderlund, U., Andrйasson, P.-G., & Kuzmenkova, O. (2016). The U-Pb zircon and baddeleyite ages of the Neoproterozoic Volyn Large Igneous Province: implication for the age of the magmatism and the nature of a crustal contaminant. GFF, 138(1), 17—30.

Tarling, D.H., & Hrouda, F. (1993). The Magnetic Anisotropy of Rocks. London, Glasgow, New York, Tokyo, Melbourne, Madras: Chapman & Hall.

Torsvik, T.H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D.J.J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., McCausland, P.J.A., & Cocks, L.R.M. (2012). Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114(3-4), 325—368.

Van der Voo, R. (1990). The reliability of paleomagnetic data. Tectonophysics, 184(1), 1—9.

Veikkolainen, T.H., Biggin, A.J., Pesonen, L.J., Evans, D.A., & Jarboe, N.A. (2017). Advancing Precambrian palaeomagnetism with the PALEOMAGIA and PINT(QPI) databases. Scientific Data, 4, 170068.

Walderhaug, H.J., Torsvik, T.H., & Halvorsen, E. (2007). The Egersund dykes (SW Norway): a robust Early Ediacaran (Vendian) palaeomagnetic pole from Baltica. Geophysical Journal International, 168(3), 935—948.



How to Cite

Bakhmutov, V. G. ., Poliachenko, I., Cherkes, S., Shcherbakova, V., & Hlavatskyi, D. . (2022). Palаeomagnetism of the Vendian traps of Volyn, southwestern margin of the East European platform. P. 1: palаeomagnetic directions and poles. Geofizicheskiy Zhurnal, 43(6), 70–119.