Палеомагнетизм вендських трапів Волині, південно- західна околиця Східноєвропейської платформи. Ч. 1: палеомагнітні напрямки та полюси

Автор(и)

  • В.Г. Бахмутов Інститут геофізики ім. С.І. Субботіна НАН України, Україна
  • Є.Б. Поляченко Інститут геофізики ім. С.І. Субботіна НАН України, Україна
  • С.І. Черкес Інститут геофізики ім. С.І. Субботіна НАН України, Україна
  • В.В. Щербакова Геофізична обсерваторія «Борок» Інституту фізики Землі ім. О.Ю. Шмідта РАН, Російська Федерація
  • Д.В. Главацький Інститут геофізики ім. С.І. Субботіна НАН України, Україна

DOI:

https://doi.org/10.24028/gzh.v43i6.251555

Ключові слова:

палеомагнетизм, венд, трапи Волині

Анотація

В еволюції нашої планети венд займає особливе місце, оскільки: 1) він передував «кембрійському вибуху», коли на Землі різко зросла різноманітність багатоклітинних організмів; 2) з ним пов’язана глобальна тектонічна та палеогеографічна перебудова суперконтинентів, зміна режиму генерації геомагнітного поля та інші глобальні процеси, що торкнулись різних оболонок Землі. В публікаціях останніх років вказується на вкрай нерегулярну поведінку геомагнітного поля у венді, що суттєво відрізняється від сучасного режиму генерації геомагнітного поля. Отримання нової інформації про конфігурацію та величину геомагнітного поля виходить на перший план під час розгляду причин, які можуть викликати різні режими роботи геодинамо. У статті детально описано результати палеомагнітних досліджень трапів Волині, розкритих кар’єрами базальтів і туфів волинської серії, вік яких оцінено близько 560—580 млн років. Нові визначення палеонапрямків та палеополюсів добре узгоджуються з раніше опублікованими даними інших авторів та суттєво їх доповнюють. На зразках «низькотитанистих» базальтів виділено високотемпературну (>500 °C) характеристичну компоненту намагніченості, що за всіма ознаками є первинною. На цих зразках отримано нові дані стосовно вкрай низької палеонапруженості геомагнітного поля — на порядок нижче сучасної. На зразках «високотитанистих» базальтів характеристичну компоненту намагніченості виділено в діапазоні температур 200—400 °C. При цьому результатів щодо визначення палеонапруженості отримати не вдалося, і природа цієї намагніченості залишається нез'ясованою. Нові дані зіставлені з палеомагнітними визначеннями вендських—ранньокембрійських полюсів Східноєвропейської платформи, виконаними іншими авторами. Аналіз цих даних у рамках гіпотези про аномальне магнітне поле в едіакарії, що характеризується низьким дипольним моментом і високою частотою інверсії, показав, що на цьому етапі для тестування гіпотези необхідна додаткова інформація, яка може бути отримана за результатами досліджень стратиграфічно повнішого розрізу трапів волинської серії. Цей розріз розкритий серією свердловин, що буде описано у наступній частині статті.

Посилання

Velikanov, V.A., & Korenchuk, L.V. (1997). Phases of magmatism and their relationship with sedimentation in the Late Precambrian (Riphean-Vendian) of Volyn-Podolia. Geologicheskiy Zhurnal, (1-2), 124—130 (in Russian).

Veselovskiy, R.V., Konstantinov, K.M., Latyshev, A.V., & Fetisova, A.M. (2012). Paleomagnetism of subvolcanic traps of the northern Siberian platform: some geological and methodological implications. Fizika Zemli, (9-10), 74—87 (in Russian).

Glevasskaya, A.M., Kravchenko, S.N., & Kosovskiy, Ya.A. (2006). Magnetostratigraphy of traps from southwestern margin of the East European Craton. Geofizicheskiy Zhurnal, 28(4), 121—130 (in Russian).

Glevasskaya, A.M., Mikhaylova, N.P., & Kravchenko, S.N. (2000). Paleomagnetism of the Volhynian and Mogilev-podolian series of the Vendian of southwestern part of East-European platform. Geofizicheskiy Zhurnal, 22(2), 3—18 (in Russian).

Iosifidi, A.G., Mikhaylova, V.A., Sal'naya, N.V., & Khramov, A.N. (2012). Paleomagnetism of sedimentary rocks of the Asha group of the western slope of the southern Urals: new data. Neftegazovaya geologiya. Teoriya i praktika, 7(4). Retrieved from http://www.ngtp.ru/rub/2/57_2012.pdf (in Russian).

Latyshev, A.V., Veselovskiy, R.V., Ivanov, A.V., Fetisova, A.M., & Pavlov, V.E. (2013). Evidence of short intense peaks of magmatic activity in the south of the Siberian platform (Angara-Taseeva depression) based on the results of paleomagnetic studies. Fizika Zemli, (6), 77—90 (in Russian).

Melnychuk, V.G. (2009a). Bialowieza-Podolia trap complex of the lower Vendian and its copper content. Heolohichnyy Zhurnal, (4), 59—68 (in Ukrainian).

Melnychuk, V.G. (2009b). Upper-Pripyat trap complex of the Lower Vendian and its copper content. Heolohichnyy Zhurnal, (3), 14—22 (in Ukrainian).

Melnychuk, V.G. (2009c). Western Bug trap complex and its copper content. Heolohichnyy Zhurnal, (1), 42—49 (in Ukrainian).

Melnychuk, V.G. (2010). Evolutionary model of Early Vendian trap magmatism in the southwestern part of the Eastern European platform. Heolohichnyy Zhurnal, (1), 77—85 (in Ukrainian).

Metelkin, D.V., Lavrenchuk, A.V., & Mikhaltsov, N.E. (2019). Could the Norilsk region dolerite sills have recorded geomagnetic field reversals? Results of mathematical modeling. Fizika Zemli, (6), 24—33 (in Russian).

Mikhaltsov, N.E., Kazanskiy, A.Yu., Ryabov, V.V., Shevko, A.Ya., Kuprish, O.V., & Bragin, V.Yu. (2012). Paleomagnetism of trap basalts in the northwestern Siberian craton, from core data. Geologiya i geofizika, 53(11), 1595—1613 (in Russian).

Nosova, A.A., Veretennikov, N.V., & Levskiy, L.K. (2005). The nature of the mantle source and the features of crustal contamination of the Neoproterozoic traps of the Volyn province (Nd- and Sr-isotope and geochemical data). Doklady RAN, 400(4), 1—5 (in Russian).

Semenenko, N.P. (Ed.). (1975). Criteria for predicting deposits of the Ukrainian Shield and its frame. Kiev: Naukova Dumka (in Russian).

Staritskiy, Yu.G. (Ed.). (1981). History of development and minerageny of the cover of the Russian Platform. Moscow: Nedra (in Russian).

Pavlov, V.E., Fluto, F., Veselovskiy, R.V., Fetisova, A.M., & Latyshev, A.V. (2011). Secular geomagnetic variations and volcanic pulses in Permian-Triassic trap basalts of the Noril’sk and Maimecha-Kotui provinces. Fizika Zemli, (5), 35—50 (in Russian).

Pavlov, V.E., Pasenko, A.M., Shatsillo, A.V., Powerman, V.I., Malyshev, S.V., & Shcherbakova, V.V. (2018). Physics of the Solid Earth. Systematics of Early Cambrian Paleomagnetic Directions from the Northern and Eastern Regions of the Siberian Platform and the Problem of an Anomalous Geomagnetic Field in the Time Vicinity of the Proterozoic-Phanerozoic Boundary. Fizika Zemli, (5), 122—146. https://doi.org/10.1134/S0002333718050113 (in Russian).

Postnikova, N.E. (1997). Upper Precambrian of the Russian Plate and its oil content. Moscow: Nedra, 221 p. (in Russian).

Savchenko, N.A., Bernadskaya, L.G., Dolgova, V.I., Buturlinov, N.V., Bugaenko, V.N., Semka, V.A., Bondarenko, V.G., & Plakhotnyy, L.G. (1984). Paleovolcanism of Ukraine. Kiev: Naukova Dumka, 252 p. (in Russian).

Gozhyk P.F. (Ed.). (2013). Stratigraphy of Upper Proterozoic and Phanerozoic of Ukraine (Vol. 1). Stratigraphy of Upper Proterozoic, Paleozoic and Mesozoic of Ukraine. Kyiv: Logos, 637 p. (in Ukrainian).

Shatsillo, A.V., Rud’ko, S.V., Latysheva, I.V., Rud’ko, D.V., Fedyukin, I.V., Powerman, V.I., & Kuznetsov, N.B. (2020). A Devious Equatorial Dipole Hypothesis: on the Low-Latitude Glaciations Problem and Geomagnetic Field Configuration in Late Precambrian. Fizika Zemli, (6), 113—134. https://doi.org/10.31857/S0002333720060083 (in Russian).

Shumlyanskyy, L.V., Andreasson, P.G., Melnychuk, V.G., & Derevska, K.І. (2006). Age of basalt formation of Volhyn trap formation according to previous results of zircon study by ion-ion microprobe method. Heokhimiia i rudoutvorennia, (24), 21—29 (in Ukrainian).

Shumlyanskyy, L.V., & Derevska, K.І. (2001). The first Sm-Nd and Rb-Sr isotope-geochemical data on the Vendian basalts of Volhynia. In Naukovi pratsi Instytututu fundamentalnykh doslidzhen (pp. 67—75). Kyiv: Znannya (in Ukrainian).

Abrajevitch, A., & Van der Voo, R. (2010). Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis. Earth and Planetary Science Letters, 293, 164—170. https://doi.org/10.1016/j.epsl. 2010.02.038.

Bazhenov, M.L., Levashova, N.M., Meert, J.G., Golovanova, I.V., Danukalov, K.N., & Fedorova, N.M. (2016). Late Ediacaran magnetostratigraphy of Baltica: Evidence for Magne-tic Field Hyperactivity? Earth and Planetary Science Letters, 435, 124—135. https://doi.org/ 10.1016/j.epsl.2015.12.015.

Biggin, A.J., Steinberger, B., Aubert, J., Suttie, N., Holme, R., Torsvik, T.H., & van Hinsbergen, D.J.J. (2012). Possible links between long-term geomagnetic variations and whole-mantle convection processes. Nature Geoscience, 5(8), 526—533. https://doi.org/10.1038/ngeo1521.

Bono, R.K., Tarduno, J.A., Nimmo, F., & Cottrell, R.D. (2019). Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. Nature Geoscience, 12, 143—147. https://doi.org/10.1038/s41561-018-0288-0.

Bryan, S.E., & Ernst, R.E. (2008). Revised definition of large igneous provinces (LIPs). Earth-Science Reviews, 86, 175—202. https://doi.org/ 10.1016/j.earscirev.2007.08.008.

Chadima, M., & Hrouda, F. (2006). Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Travaux Geophysiques, 27, 20—21.

Chadima, M. & Jelнnek, V. (2008). Anisoft 4.2. Anisotropy data browser. Contributions to Geophysics and Geodesy, 38, 41.

Compston, W., Sambridge, M.S., Reinfrank, R.F., Moczydeowska, M., Vidal, G., & Claesson, S. (1995). Numerical ages of volcanic rocks and the earliest faunal zone within the Late Precambrian of east Poland. Journal of the Geological Society, 152(4), 599—611. https://doi.org/10.1144/gsjgs.152.4.0599.

Elming, S.A., Kravchenko, S.N., Layer, P., Rusakov, O.M., Glevasskaya, A.M., Mikhailova, N.P., & Bachtadse, V. (2007). Palaeomagnetism and 40Ar/39Ar age determinations of the Ediacaran traps from the southwestern margin of the East European Craton, Ukraine: relevance to the Rodinia break-up. Journal of the Geologi-cal Society, 164(5), 969—982. https://doi.org/10.1144/0016-76492005-163.

Fedorova, N.M., Levashova, N.M., Meert, J.G., Maslov, A.V., & Krupenin, M.T. (2014). New paleomagnetic data on baltica based on upper ediacaran deposits on the western slope of the Middle Urals. Doklady Earth Sciences, 456(1), 512—516. https://doi.org/10.1134/s102 8334x14050134.

Fedorova, N.M., Bazhenov, M.L., Meert, J.G., & Kuznetsov, N.B. (2016). Ediacaran-Cambrian paleogeography of Baltica: A paleomagnetic view from a diamond pit on the White Sea east coast. Lithosphere, 8(5), 564—573. https://doi.org/10.1130/l539.1.

Golovanova, I.V., Danukalov, K.N., Kozlov, V.I., Puchkov, V.N., Pavlov, V.E., Gallet, Y.M., Levashova, N.M., Sirota G.S., Khairullin R.R., Bazhenov, M.L. (2011). Paleomagnetism of the Upper Vendian Basu formation of the Bashkirian Meganticlinorium revisited. Izvestiya, Physics of the Solid Earth, 47(7), 623—635. https://doi.org/10.1134/s1069351311070020.

Halls, H. C., Lovette, A., Hamilton, M., & Sцderlund, U. (2015). A paleomagnetic and U-Pb geochronology study of the western end of the Grenville dyke swarm: Rapid changes in paleomagnetic field direction at ca. 585 Ma related to polarity reversals? Precambrian Research, 257, 137—166. https://doi.org/10.1016/j.precamres.2014.11.029.

Heunemann, C., Krasa, D., Soffel, H., Gurevitch, E., & Bachtadse, V. (2004). Directions and intensities of the Earth’s magnetic field during a reversal: results from the Permo-Triassic Siberian trap basalts, Russia. Earth and Planetary Science Letters, 218(1-2), 197—213. https://doi.org/10.1016/S0012-821X(03)00642-3.

Iglesia Llanos, M.P., Tait, J.A., Popov, V., Abal-massova, A. (2005). Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic—Early Palaeozoic. Earth and Planetary Science Letters, 240(3-4), 732—747. https: //doi.org/10.1016/j.epsl.2005.09.063.

Iosifidi, A.G., Bachtadse, V., Khramov, A. & Kuz-netsova, A. (2000). Palaeomagnetic data for Vendian basalts from Ukraine. In V.N. Troyan et al. (Eds), 3rd International Conference on Problems of Geocosmos, Abstracts Volume, St. Petersburg (pp. 74—75).

Iosifidi, A.G. & Khramov, A.N. (2005). Multicomponent magnetization of Vendian sedimentary rocks in Podolia, Ukraine. Russian Journal of Earth Sciences, 7, 1—14. https://doi.org/10.2205/2004ES000166.

Kamo, S.L., Czamanske, G.K., Amelin, Yu., Fedorenko, V.A., Davis, D.W., & Trofimov V.R. (2003). Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters, 214(1-2), 75—91. https://doi.org/10.1016/S0012-821X(03)00347-9.

Kirschvink, J.L., Ripperdan, R.L. (1997). Evidence for a Large-Scale Reorganization of Early Cambrian Continental Masses by Inertial Interchange True Polar Wander. Science, 277(5325), 541—545. https://doi.org/10.1126/science.277.5325.541.

Kirschvink, J.L. (1980). The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International, 62(3), 699—718. https://doi.org/10.1111/j.1365-246x.1980.tb02601.x.

Klein, R., Salminen, J., & Mertanen, S. (2015). Baltica during the Ediacaran and Cambrian: A paleomagnetic study of Hailuoto sediments in Finland. Precambrian Research, 267, 94—105. https://doi.org/10.1016/j.precamres.2015.06.005.

Kuzmenkova, O.F., Shumlyansky, L.V., Nosova, A.A., Voskoboynikova, T.V., & Grakovich, I.J. (2011). Petrology and correlation of trap formations of the Vendian in the adjacent areas of Belarus and Ukraine. Litasfera, 2(35), 3—11.

Levashova, N.M., Bazhenov, M.L., Meert, J.G., Danukalov, K.N., Golovanova, I.V., Kuznetsov, N.B., & Fedorova, N.M. (2015). Paleomagnetism of upper Ediacaran clastics from the South Urals: Implications to paleogeography of Baltica and the opening of the Iapetus Ocean. Gondwana

Research, 28(1), 191—208. https://doi.org/10.1016/j.gr.2014.04.012.

Levashova, N.M., Bazhenov, M.L., Meert, J.G., Kuznetsov, N.B., Golovanova, I.V., Danukalov, K.N., & Fedorova, N.M. (2013). Paleogeography of Baltica in the Ediacaran: Paleomagnetic and geochronological data from the clastic Zigan Formation, South Urals. Precambrian Research, 236, 16—30. https://doi.org/10.1016/j.precamres.2013.06.006.

Lubnina, N.V., Pisarevsky, S.A., Puchkov, V.N., Kozlov, V.I., & Sergeeva, N.D. (2014). New paleomagnetic data from Late Neoproterozoic sedimentary successions in Southern Urals, Russia: implications for the Late Neoproterozoic paleogeography of the Iapetan realm. International Journal of Earth Sciences, 103(5), 1317—1334. https://doi.org/10.1007/s00531-014-1013-x.

Meert, J.G. (2014). Ediacaran-Early Ordovician paleomagnetism of Baltica: A review. Gondwana Research, 25(1), 159—169. https://doi.org/10.1016/j.gr.2013.02.003.

Meert, J.G. & Lieberman, B.S. (2004). A palaeomagnetic and palaeobiogeographical perspective on Latest Neoproterozoic and Early Cambrian tectonic events. Journal of the Geological Society, London, 161, 477—487. http://dx.doi.org/10.1144/0016-764903-107.

Meert, J.G., Levashova, N.M., Bazhenov, M.L., & Landing, E. (2016). Rapid changes of magnetic field polarity in the Late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Research, 34, 149—57. https://doi.org/10.1016/j.gr.2016.01.001.

Meert, J.G., Torsvik, T.H., Eide, E.A., & Dahlgren, S. (1998). Tectonic Significance of the Fen Province, S. Norway: Constraints from Geochronology and Paleomagnetism. The Journal of Geology, 106(5), 553—564. https://doi.org/10.1086/516041.

Nawrocki, J., Boguckyj, A., & Katinas, V. (2004). New Late Vendian palaeogeography of Baltica and the TESZ. Geological Quarterly, 48(4), 309—316.

Pisarevsky, S.A., Komissarova, R.A., & Khramov, A.N. (2001). Reply to comment by J.G. Meert and, R. Van der Voo on «New palaeomagnetic result from Vendian red sediments in Cisbaikalia and the problem of the relationship of Siberia and Laurentia in the Vendian». Geophysical Journal International, 146(3), 871—873. https://doi.org/10.1046/j.0956-540x.2001.01475.x.

Piper, J.D.A. (1988). Palaeomagnetism of (Late Vendian—Earliest Cambrian) minor alkaline intrusions, Fen Complex, southeast Norway. Earth and Planetary Science Letters, 90(4), 422—430. https://doi.org/10.1016/0012-821x(88)90140-9.

Popov, V., Iosifidi, A., Khramov, A., Tait, J., & Bachtadse, V. (2002). Paleomagnetism of Upper Vendian sediments from the Winter Coast, White Sea region, Russia: Implications for the paleogeography of Baltica during Neoproterozoic times. Journal of Geophysical Research: Solid Earth, 107(B11), EPM 10-1—EPM 10-8. https://doi.org/10.1029/2001jb001607.

Popov, V.V., Khramov, A.N., & Bachtadse, V. (2005). Palaeomagnetism, magnetic stratigraphy, and petromagnetism of the Upper Vendian sedimentary rocks in the sections of the Zolotitsa River and in the Verkhotina Hole, Winter Coast of the White Sea, Russia. Russian Journal of Earth-Sciences, 7(2), 115—143. https://doi.org/10.2205/2005ES000167.

Shcherbakova, V.V., Bakhmutov, V.G., Thallner, D., Shcherbakov, V.P., Zhidkov, G.V., & Biggin, A.J. (2020). Ultra-low palaeointensities from East European Craton, Ukraine support a globally anomalous palaeomagnetic field in the Ediacaran. Geophysical Journal International, 220, 1920—1946. https://doi.org/10.1093/gji/ggz566.

Shumlyanskyy, L.V., & Andrйasson, P.G. (2004). New geochemical and geochronological data from the Volyn Flood Basalt in Ukraine and correlation with large igneous events in Baltoscandia (Abstract). GFF, 126, 85—86.

Shumlyanskyy, L., Nosova, A., Billstrцm, K., Sцderlund, U., Andrйasson, P.-G., & Kuzmenkova, O. (2016). The U-Pb zircon and baddeleyite ages of the Neoproterozoic Volyn Large Igneous Province: implication for the age of the magmatism and the nature of a crustal contaminant. GFF, 138(1), 17—30. https://doi.org/10.1080/11035897.2015.1123289.

Tarling, D.H., & Hrouda, F. (1993). The Magnetic Anisotropy of Rocks. London, Glasgow, New York, Tokyo, Melbourne, Madras: Chapman & Hall. https://doi.org/10.1017/s0016756800021543.

Torsvik, T.H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D.J.J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., McCausland, P.J.A., & Cocks, L.R.M. (2012). Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114(3-4), 325—368. https://doi.org/10.1016/j.earscirev.2012.06.007.

Van der Voo, R. (1990). The reliability of paleomagnetic data. Tectonophysics, 184(1), 1—9. https://doi.org/10.1016/0040-1951(90)90116-p.

Veikkolainen, T.H., Biggin, A.J., Pesonen, L.J., Evans, D.A., & Jarboe, N.A. (2017). Advancing Precambrian palaeomagnetism with the PALEOMAGIA and PINT(QPI) databases. Scientific Data, 4, 170068. https://doi.org/10.1038/sdata.2017.68.

Walderhaug, H.J., Torsvik, T.H., & Halvorsen, E. (2007). The Egersund dykes (SW Norway): a robust Early Ediacaran (Vendian) palaeomagnetic pole from Baltica. Geophysical Journal International, 168(3), 935—948. https://doi.org/10.1111/j.1365-246x.2006.03265.x.

##submission.downloads##

Опубліковано

2022-02-07

Як цитувати

Бахмутов, В., Поляченко, Є., Черкес, С. ., Щербакова, В., & Главацький, Д. (2022). Палеомагнетизм вендських трапів Волині, південно- західна околиця Східноєвропейської платформи. Ч. 1: палеомагнітні напрямки та полюси. Геофізичний журнал, 43(6), 70–119. https://doi.org/10.24028/gzh.v43i6.251555

Номер

Розділ

Статті