Three-dimensional density model of the sedimentary filling of the Carpathian-Pannonian region
DOI:
https://doi.org/10.24028/gj.v44i6.273639Keywords:
three-dimensional modeling, density, residual gravity field (stripped gravity map), Neogene-Quaternary sediments (Pannonian Basin, Transylvanian Depression, Transcarpathian Trough), molasse deposits of the Carpathian Foredeep, flysch deposits of the Outer Carpathians, Carpathian-Pannonian regionAbstract
The work is devoted to the construction and calculations of a three-dimensional density model of the sedimentary filling of the Carpathian-Pannonian region in order to obtain a more detailed map of the residual gravity field (stripped gravity map). This research was facilitated by and in-depth analysis of a large amount of data highlighting the density properties of Neogene-Quaternary deposits (the Pannonian Basin, the Transylvanian Depression, the Transcarpathian Trough), molasse deposits of the Carpathian Foredeep and flysch deposits of the Outer Carpathians in the Czech Republic, Slovakia, Poland, and Ukraine. Basic data for the construction of a three-dimensional density model of sedimentary deposits were obtained from laboratory studies of rock samples from drill core logging and deep exploratory wells, as well as rock samples taken from numerous outcrops in the research region. The average value of the density for molasse and flysch deposits of the Romanian part of the Carpathians was estimated based on the results of comparing the lithologic-stratigraphic complexes of these deposits in the adjacent areas of the eastern part of the Ukrainian Carpathians with similar ones in the Romanian Eastern Carpathians and the analysis of available data on the density of the Carpathian Foredeep and the Outer Flysch Carpathians for the Ukrainian part. The research method, which is a modification of geological reduction, has been applied in the work. Its essence consists of the sequential calculation and extraction of the three-dimensional gravity effect of sedimentary layers, the parameterization of which is better defined than those layers that lie deeper, from the anomalous gravity field. As a result, a residual gravity field is formed due to deep inhomogeneities associated with the consolidated part of the crust and the upper mantle. Calculations of gravity effects were carried out on a scale of 1:4,000,000 on a 10—10 km grid using the modern GMT-Auto. The detailed map of the residual (cleared of the effects of sedimentary layers) gravity field of the Carpathian-Pannonian region (stripped gravity map) is an effective tool in understanding the sources of the dominant gravity features of the studied region. Thus, the Pannonian Basin manifests itself as a general maximum with a number of local positive anomalies (more than 50 mGal), which are observed over small depressions filled with low-density thick sedimentary deposits: the Danube, Solnok, Makó, Békés Basins, and the Transcarpathian Trough. The phenomenon of positive and not negative values of the residual gravity field for these structures can be explained by the intrusion of the sedimentary cover of volcanic rocks, or the presence of high-density bodies with a special petrophysical composition (metamorphic complexes?) in the consolidated part of the crust. Another reason may be the effect of the regional background, which is due to the rise of Moho boundary in the Pannonian Basin to 24—26 km. The gravity minimum of the Western Carpathians, which on the map of the anomalous gravity field, consists of two parts (northern and southern), is reflected by one intense minimum, the southern one (-60 mGal). The northern part of this gravity minimum is practically leveled after calculations of the gravity effect of sedimentary filling, so it can be assumed that its source is low-density flysch and molasse deposits. The southern part of the gravity minimum of the Western Carpathians can be explained by the mass deficit in the consolidated part of the crust. Since the intensity of the gravity lows of the Eastern (-80 mGal) and Southern (-100 mGal) Carpathians remained high even after being cleared of the effect of the layer of sedimentary deposits, it can be assumed that they are due not only to the low values of the density of the sediments of the Outer Carpathians and the Carpathian Foredeep, but additionally also due to the gravity effect of deep inhomogeneities of the consolidated part of the crust (crustal root).
References
Andreeva-Gryhorovych, A.S., Vashchenko, V.O., Hnylko, O.M., & Trofymovich, N.A. (2011). Stratigraphy of Neogene sediments of the Ukrainian Carpathians and Subcarpathians. Tektonika i stratyhrafiya, (38), 67—77 (in Ukrainian).
Bilichenko, V.Ya., Vus, M.I., & Vulchin, M.G. (1972). On the results of gravimetric studies carried out by the Uzhgorod gravimetric party No. 61/71 in the Transcarpathian trough on the Beregovo-Svalyava-Perechin-Uzhgorod area in 1971. Report. Part I. Lvov, 68 p. (in Russian).
Bilichenko, V.Ya., Kolesnichenko, O.V., & Demchishin, V.A. (1974). On the results of gravimetric studies carried out by the Zabolotovskaya gravimetric party No. 61/73 in the Cis-Carpathian trough on the Selyatyn-Kosov-Drachinets-Krasnoilsk area in 1973. Report. Part I. Lvov, 72 p. (in Russian).
Bilichenko, V.Ya., Protsak, P.T., & Demchishin, V.A. (1978). On gravimetric studies in the northwestern part of the Carpathian trough, carried out by gravimetric team No. 61/77 in 1977. Report. Vol. I. Lvov, 71 p. (in Russian).
Bilichenko, V.Ya., Protsak, P.T., & Demchishin, V.A. (1979). On gravimetric studies carried out in the northwestern part of the Carpathian trough and the band of its junction with the platform, gravimetric batch No. 61/78 in 1978. Report. Vol. I. Lvov, 62 p. (in Russian).
Bobrovnik, M.D. (1973). Some data on reservoir properties of flysch Carpathian rocks. In Prospects for oil and gas potential and the direction of regional and exploration work for oil and gas in the Ukrainian Carpathians (pp. 15—19). Kiev: Ed. of the Ukrainian Research and Geological Survey Institute (in Russian).
Borodatyy, I.I., Eikhberg, Yu.Ya., Stolyarova, E.N., Goshchitskaya, G.V., & Kokhanovskaya, L.V. (1965). Generalization, operational analysis and geological interpretation of seismic and gravimetric surveys for individual regions of the Western regions of the Ukrainian SSR. Report on the work of the thematic party No. 100/64. Funds ZUGRE. Lvov: State Geological Committee of the USSR, State Production Geological Committee of the Ukrainian SSR, West Ukrainian Geophysical Exploration Expedition, 202 p. (in Russian).
Vysotskiy, I.V., Glushko, V.V., & Patrouts, I. (1963). Miocene of the foothill foredeep of the Eastern Carpathians. Sovetskaya geologiya, (9), 12—29 (in Russian).
Glushko, V.V., & Kruglov, S.S. (Eds.). (1971). Geological structure and fossil fuels of the Ukrainian Carpathians. Moscow: Nedra, 392 p. (in Russian).
Hnylko, O. (2010). On the north-eastern boundary of the Krosno tectonic zone in the Ukrainian Carpathians. Heolohiya i heokhimiya horyuchykh kopalyn, (2), 44—57 (in Ukrainian).
Hnylko, O.M. (2017). Structures of the lateral extrusion in the Carpathians. Geodynamics, (1), 16—25. https://doi.org/10.23939/jgd2017.01. 018 (in Ukrainian).
Hnylko, O.M. (2011). Tectonic zoning of the Carpathians in terms of the terrane tectonics section 1. Main units of the Carpathian building. Geodynamics, (1), 47—56. https://doi.org/10. 23939/jgd2011.01.047 (in Ukrainian).
Gnilko, O.M., Gnilko, S.R., & Generalova, L.V. (2015). The formation of structures of cliff zones and inter-cliff flysch of the Inner Ukrainian Carpathians is the result of convergence and collision of microcontinental terranes. Vestnik Sankt-Peterburgskogo universiteta. Ser. 7 (Geologiya), (2), 4—24 (in Russian).
Hontovyi, I.Z. (1961). Rock density of the Precarpathian Trough. Geologicheskiy Zhurnal, XXI(4), 30—39 (in Ukrainian).
Detailing of the identified oil and gas prospective objects within the Putylska Square by Paleogene, Cretaceous and Jurassic deposits. (2005). Report on research work. Head O.P. Petrovsky. Ivano-Frankivsk, 95 p. (in Ukrainian).
Yegorova, T.P., Gobarenko, B.S., Yanovskaya, T.B., & Baranova, K.P. (2012). The structure of the lithosphere of the Black Sea by the results of 3D gravity analysis and seismic tomography. Geofizicheskiy Zhurnal, 34(5), 38—–59. https://doi.org/10.24028/gzh.0203-3100.v34i5.2012.116662 (in Russian).
Zayats, H.B. (2013). The deep structure of the depth of the Western region of Ukraine based on seismic research and the directions of exploration for oil and gas. Lviv: Tsentr Evropy, 80 p. (in Ukrainian).
Kruglov, S.S. (1973). The main features of the structure of the flysch complex of the Ukrainian Carpathians. In Prospects for oil and gas potential and the direction of regional and exploration work for oil and gas in the Ukrainian Carpathians (pp. 19—27). Kiev: Ed. of the Ukrainian Research and Geological Survey Institute (in Russian).
Kruglov, S.S., Smirnov, S.E., Spitkovskaya, S.M., Filyshtinskiy, L.E., & Khizhnyakov, A.V. (1985). Geodynamics of the Carpathians. Kiev: Naukova Dumka, 136 p. (in Russian).
Kulchitskiy, Ya.O. (1966). On the integumentary-scaly structure of the southern slope of the Ukrainian Carpathians. Geologicheskiy sbornik L’vovskogo geologicheskogo obshchestva, (10), 79—93 (in Russian).
Kutas, R.I. (2016). Geothermal Conditions and Mesozoic-Cainozoic Evolution of the Carpatho-Pannonian Region. Geofizicheskiy Zhurnal, 38(5), 75—107. https://doi.org/10.24028/gzh.0203-3100.v38i5.2016.107823 (in Russian).
Chekunov, A.V. (Ed.). (1994). Lithosphere of Central and Eastern Europe. Young platforms and Alpine fold belt. Kiev: Naukova Dumka, 331 p. (in Russian).
Makarenko, I.B. (2019). Heterogeneity of the Earth’s crust of Ukraine and adjacent regions inferred from 3D gravityl modeling. Doctor’s thesis. Kyiv, 380 p. (in Ukrainian).
Makarenko, I.B. (2022). The density of sedimentary complexes of the Carpathian-Pannonian region (generalization). Geofizicheskiy Zhurnal, 43(6), 120—161. https://doi.org/10.24028/gzh.v43i6.251556 (in Russian).
Makarenko, I.B., Starostenko, V.I., Kuprienko, P.Ya., Savchenko, O.S., & Legostaeva, O.V. (2021). Heterogeneity of the Earth’s crust of Ukraine and the adjacent regions as a result of 3D gravity modeling. Kyiv: Naukova Dumka, 204 p. (in Ukrainian).
Melnichuk, M.I., Kuznetsova, V.G., Somov, V.I., Maksimchuk, V.E., Nagirnyy, T.S., & Sokurova, A.N. (1975). Connection of physical fields with the deep structure of the Carpathian region. Final report 1971—1975, 248 p. (in Russian).
Nikolaev, V.G. (1986). Pannonian basin (structure of the sedimentary cover and development). Moscow: Nauka, 103 p. (in Russian).
Conducting an integral interpretation of a complex of geological and geophysical data on seismic profiles of the South-Bushtyna structure in the Solotvyn depression with the aim of forecasting promising oil and gas objects. (2005). Report on research work. Head O.P. Petrovsky. Ivano-Frankivsk, 101 p. (in Ukrainian).
Conducting an integral interpretation of a complex of geological and geophysical data on seismic profiles of the Orkhovytsia-Dubanevytska area for the purpose of forecasting promising oil and gas objects in the Jurassic and Sarmatian deposits. (2008). Report on research work. Head O.P. Petrovsky. Ivano-Frankivsk, 132 p. (in Ukrainian).
Carrying out a detailed complex interpretation of geological and geophysical data on seismic profiles of the East Dolyna area with the aim of forecasting promising oil and gas facilities. Report on research work. (2003). Head O.P. Petrovsky. Ivano-Frankivsk, 93 p. (in Ukrainian).
Sovchik, Ya.V. (1976). On comparison of the Paleogene flysch of the Ukrainian and Romanian Carpathians. Geologicheskiy Zhurnal, 36(6), 46—54 (in Russian).
Starostenko, V.I., Legostaeva, O.V., Makarenko, I.B., & Savchenko, A.S. (2015). Software system for automated data interpretation of potential fields (GMT-Auto). Geofizicheskiy Zhurnal, 37(1), 42—52. https://doi.org/10.24028/gzh.0203-3100.v37i1.2015.111322 (in Russian).
Starostenko, V.I., Sharypanov, V.M., Savchenko, A.S., Legostaeva, O.V., Makarenko, I.B., & Kuprienko, P.Ya. (2011). On the automated interactive processing of graphic images of geological and geophysical objects. Geofizicheskiy Zhurnal, 33(1), 54—61. https://doi.org/10.24028/ gzh.0203-3100.v33i1.2011.117325 (in Russian).
Starostenko, V.I., Sharypanov, V.M., Sharypanov, A.V., Savchenko, A.S., Legostayeva, O.V., Makarenko, I.B., & Kuprienko, P.Ya. (2016). Interactive software package Isohypse for three-dimensional geological and geophysical models, and its practical use. Geofizicheskiy Zhurnal, 38(1), 30—42. https://doi.org/10.24028/ gzh.
-3100.v38i1.2016.107720 (in Russian).
Sollogub, V.B., Guterh, A., & Prosen, D. (Eds.). (1978). The structure of the earth’s crust and upper mantle of Central and Eastern Europe. Kiev: Naukova Dumka, 271 p. (in Russian).
Subbotin, S.I. (1979). Issues of gravimetry, studies of the Earth’s crust and mantle, the theory of tectogenesis: selected works. Kiev: Naukova Dumka, 376 p. (in Russian).
Subbotin, S.I. (1955). Deep structure of the Soviet Carpathians and adjacent territories according to geophysical research data. Kiev: Publ. House of the Academy of Sciences of the Ukrainian SSR, 260 p. (in Russian).
Scheme of gravity field of Ukraine. 1:1 000 000. (2002). Northern State Regional Geological Enterprise «Northern Geology» of the Ministry of Natural Resources of Ukraine (in Ukrainian).
Fedushchak, M.Yu. (1962). Conditions for the formation of exotic conglomerates of the Vorotyshchen series of the Precarpathia. Kyiv: Publ. House of the Academy of Sciences of the Ukrainian SSR, 112 p. (in Ukrainian).
Khain, V.E. (2001). Tectonics of continents and oceans. Moscow: Nauchny Mir, 605 p. (in Russian).
Khomenko, V.I. (1971). Deep structure of Transcarpathian depression. Kyiv: Naukova Dumka, 230 p. (in Ukrainian).
Tsar, M.М. (2018). Conglomerates with the exotic material in the Ukrainian Carpathians — distribution, composition, probable genesis. Geodynamics, (1), 40—50. https://doi.org/10.23939/jgd2018.01.040 (in Ukrainian).
Shlapinskyi, V.E. (2018). Pokuttia deep fault and its influence on tectonics and oil- and gas-bearing of the south-eastern segment of the Carpathians. Geodynamics, (2), 49—64. https://doi.org/10.23939/jgd2018.02.049 (in Ukrainian).
Alasonati Tašárová, Z., Afonso, J.C., Bielik, M., Götze, H.J., & Hók, J. (2009). The lithospheric structure of the Western Carpathian-Pannonian region based on the CELEBRATION 2000 seismic experiment and gravity modeling. Tectonophysics, 475, 454—469, https://doi.org/10.1016/j.tecto.2009.06.03.
Bielik, M., Kloska, K., Meurers, B., Švancara, J., Wyberaniec, S., Fancsik, T., Grad, M., Grand, T., Guterch, A., Katona, M., Królikowski, C., Mikuška, J., Pašteka, R., Petecki, Z., Polechońska, O., Ruess, D., Szalaiová, V., Šefara, J., & Vozár, J. (2006). Gravity anomaly map of the CELEBRATION 2000 region. Geologica Carpathica, 57, 145—156.
Bielik, M. (l988). A preliminary stripped gravity map of the Pannonian Basin. Physics of the Earth and Planetary Interiors, 51(1-3), 185—189. https://doi.org/10.1016/0031-9201(88)90043-X.
Bielik, M., Makarenko, I., Legostaeva, O., Starostenko, V., Dérerová, J., & Šefara, J. (2004b). Stripped gravity map of the Carpathian-Pannonian Basin Region. In: Proceedings of the 1st Workshop on International Gravity Field Research. Zentralanstalt fur Meteorologie und Geodynamik Österreichische Beiträgezu Meteorologie und Geophysik, 31, 107—117.
Bielik, M., Makarenko, I., Starostenko, V., Legostaeva, O., Dérerová, J., Šefara, J., & Pašteka, R. (2005). New 3D gravity modeling in the Carpathian-Pannonian basin region. Contributions to Geophysics and Geodesy, 35(10), 65—78.
Bielik, M., Šefara, J., Kováč, M., Bezák, V., & Plašienka, D. (2004a).The Western Carpathians — interaction of Hercynian and Alpine processes. Tectonophysics, 393(1-4), 63—86. https://doi.org/10.1016/j.tecto.2004.07.044.
Briceag, A., Jipa, D., & Melinte, M.C. (2009). Early Cretaceous deposits of the Ceahlau Nappe (Romanian Bend region). Geo-Eco-Marina, 15, 177—185.
Bucha, V., Blízkovsky, M., Burda, M., Krs, M., Suk, M., & Sefara, J. (1994). Crustal structure of the Bohemian Massif and the West Carpathians. Springer-Verlag and Academia. Berlin-Heidelberger-New York-Praha, 355 p.
Bucur, J. (1971). Observaţii Privind nomenclatura tectonică inflischulcretacicsi paleogen din Carpatii Orientali. Dăriseamăsedint sedint. Inst. geol. 1969—1970. Vol. 57. No. 5. Р. 23—32.
Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 1—56. https://doi.org/10. 1016/j.palaeo.2004.02.033.
Dérerová, J., Bielik, M., Kohút, I., & Godová, D. (2019). Calculation of temperature distribution and rheological properties of the lithosphere along transect IV in the Western Carpathian-Pannonian Basin region. Contributions to Geophysics and Geodesy, 49(4), 497—510. https://doi.org/10.2478/congeo-2019-0026.
Dirkzwager, J.B., Stephenson, R.A., & Legostaeva, O.V. (2000). The pre-Permian residual gravity field for the Dutch onshore and adjacent offshore. Global and Planetary Change, 27(1-4), 53—66. https://doi.org/10.1016/S0921-8181(01)00059-5.
Ebbing, J., Braitenberg, C., & Götze, H.-J. (2006). The lithospheric density structure of the Eastern Alps. Tectonophysics, 414(1-4), 145—155. https://doi.org/10.1016/j.tecto.2005.10.015.
Granser, H. (1987). Three-dimensional interpretation of gravity data from sedimentary Basins using an exponential density-depth function. Geophysical Prospecting, 35(9), 1030—1041. https://doi.org/10.1111/j.1365-2478.1987.tb00858.x.
Hammer, S. (1963). Deep gravity interpretation by stripping. Geophysics, 28(3), 369—378. https://doi.org/10.1190/1.1439186.
Horváth, F. (1993). Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics, 226(1-4), 333—357. https://doi.org/10.1016/0040-1951(93)90126-5.
Horváth, F., & Galacz, A. (Eds.). (2006). The Carpathian-Pannonian Region: A Review of Mesozoic-Cenozoic Stratigraphy and Tectonics. Vol. 1. Stratigraphy. Vol. 2. Geophysics, Tectonics, Facies, Paleogeography. Budapest: Hantken Press, 625 p.
Hrušecký, I. (2000). Central part of the Danube basin in Slovakia. Geophysical and geological model in regard to hydrocarbon prospection. Exploration Geophysics, Remote Sensing and Environment, VI, 2—55.
Ibrmajer, J. (1981). Geological interpretation of gravity maps of Czechoslovakia. In Zátopek, A. (Ed.), Geophysical Syntheses in Czechoslovakia (pp. 135—148). Bratislava: Veda.
Kilényi, É, & Šefara, J. (Eds.). (1989). Pre-Tertiary basement contour map of the Carpatian Basin beneath Austria, Czechoslovakia and Hungary. 1:500000. ELGI, Budapest.
Kováč, M. (2000). Geodynamický, paleografický a štruktúrny vývoj karpatsko-panónskej oblasti v miocéne. Bratislava: Veda, 202 p.
Krajnak, М., Bielik, M., Makarenko, I., Legostaeva, O., Starostenko, V.I., & Bosansky, M. (2012). The first stripped gravity map of the Turcianska Kotlina Basin. Contributions to Geophysics and Geodesy, 42(2), 181—199.
Krejc, O., & Jurova, Z. (1997). Strukturni mapa baze sedimentu flysovych prikrovu s vyznacenim prognoznich ploch. Manuskript of CGU Brno.
Królikovski, C., & Petecki, Z. (2001). Recent results of the gravity and magnetotelluric modelling. lithosphere structure in the Polish Carpathians. Slovak Geol. Mag., 7, 131—138.
Królikowski, C., & Petecki, Z. (2002). Lithospheric structure across the Trans-European Suture Zone in NW Poland based on gravity data interpretation. Geological Quarterly, 46(3), 235—245.
Lankreijer, A., Kováč, M., Cloetingh, S., Pitoňák, P., Hlôška, M., & Bierman, C. (1995.) Quantitative subsidence analysis and forward modeling of the Vienna and Danube Basins: thin-skinned versus thick skinned extension. Tectonophysics, 252(1-4), 433—451. https://doi.org/10.1016/0040-1951(95)00099-2.
Lenkey, I. (1999). Geothermics of the Pannonian Basin and its bearing on the tectonics of Basin evolution. Netherlands Research Scool of Sedimentary geology publication No. 990112. Vrije Universiteit Amsterdam, 215.
Lillie, J.R., Bielik, M., Babuška, V., & Plomerová, J. (1994). Gravity modeling of the Lithosphere in the Eastern Alpine — Western Carpathian — Pannonian Basin Region. Tectonophysics, 231(4), 215—235. https://doi.org/10.1016/0040-1951(94)90036-1.
Makarenko, I., legostaeva, O., Bielik, M., Starostenko, V., Dérerová, J., & Sefara, J. (2002). 3D gravity effects of the sedimentary complexes in the Carpathian-Pannonian region. Geologica Carpathica, 53 (Spec. Iss.), CD ROM.
Matenco, L.C. (1997). Tectonic evolution of the outer Romanian Сarpathians: Constrain from kinematic analysis and exural modeling. Vrije Universiteit, Amsterdam, 160 p.
Mocanu, V., & Radulescu, F. (1994). Geophysical features of the Romanian territory. Romanian Journal of Tectonics and Regional Geology, 75, 17—36.
Oszczypko, N., Uchman, A., & Bubniak, I. (2012). Foreland provenance of thick conglomerates in the early stage of Carpathian Foredeep development: the case of the Sloboda conglomerate (lower Miocene), western Ukraine. Geological Quarterly, 56(4), 789—802.
Oszczypko, N., Uchman, A., & Bubniak, I. (2014). The Dobrotiv Formation (Miocene) in the Boryslav-Pokuttya and Sambir nappes of the Ukrainian Carpathians: a record of sedimentary environmental change in the development of the Carpathian Foredeep Basin. Geological Quarterly, 58(3), 393—408.
Poprawa, D., & Nemcok, J. (1989). Geological atlas of the Western Outer Carpathians and their foreland. PIG Warszawa, GÚDŠ Bratislava, UUG Praha, 9.
Royden, L.H., & Horváth, F. (Eds.). (1988). The Pannonian Basin: a Case Study in Basin Evolution. Amer. Assoc. Petr. Geol. Mem., 45. 375 p.
Ryłko, W., & Tomaś, A. (2005). Basement structure below the West-Carpathian — East-Carpathian orogen junction (eastern Poland, north-eastern Slovakia and western Ukraine). Geologica Carpathica, 56(1), 29—40.
Šefara, J., Bielik, M., Bodnar, J., Cizek, P., Filo, M., Gnojek, I., Grecula, P., Halmesova, S., Husak, L., Janostik, B., Kral, M., Kubes, P., Kucharic, L., Kurkin, M., Lesko, B., Mikuska, J., Muska, P., Obernauer, D., Pospísil, L., Putis, M., Sutora, A., & Velich, R. (l987). Strukturno-tektonicka mapa vnutornych Zapadnych Karpat pre ucely prognozovania lozísk — geofyzikalne interpretacie. SGU Bratislava-Geofyzika, n.p. Brno-Uran. priemysel Liberec, 267 p.
Šefara, J., & Szabo, Z. (1997).Gravity maps — border zone of Austria, Slovakia and Hungary. Geophysical Transactions ELGI, 41, 101—122.
Starostenko, V., Buryanov, V., Makarenko, I., Rusakov, O., Stephenson, R., Nikishin, A., Georgiev, G., Gerasimov, M., Dimitiu, R., Legostaeva, O., Pchelarov, V., & Sava, C. (2004). Topography of the crust-mantle boundary beneath the Black Sea Basin. Tectonophysics, 381(1-4), 211—233. https://doi.org/10.1016/j.tecto.2002. 08.001.
Starostenko, V., Legostaeva, O., Makarenko, I., Savchenko, A., & Kuprienko, P. Ya. Automated software system for interpretation of the potential fields (GMT-Auto). (2015). 7th BgGS National Conference with International Participation «GEOPHYSICS 2015». Sofia, May 20—23. CD-ROM.
Szafián, P. (1999). A case study in the Pannonian Basin and the surrounding mountain belt. Netherlands Research Scool of Sedimentary geology publication No. 990102. Vrije Universiteit Amsterdam, 154.
Szafián, P., Horváth, F. (2006) Crustal structure in the Carpatho-Pannonian region: inisights from three-dimensional gravity modelling and their geodynamic significance. Int J Earth Sci (Geol Rundsch) 95: 50—67 DOI 10.1007/s00531-005-0488-x.
Szafián, P., Horváth, F., & Cloetingh, S. (1997) Gravity constrains on the crustal structure and slab evolution along a trans-Carpathian transect. Tectonophysics, 272(2-4), 233—247. https://doi.org/10.1016/S0040-1951(96)00260-0.
Szalaiová, E., Bielik, M., Makarenko, I., Legostaeva, O., Hók, J., Starostenko, V., Šujan, M., & Šefara, J. (2008) Calculation of a stripped gravity map with a high degree of accuracy: a case study of Liptovská Kotlina Basin (Northern Slovakia). Geological Quarterly, 52(2), 103—114.
Tassara, A., Götze, H.-J., Schmidt, S., & Hackney, R. (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. Journal of Geophysical Research: Solid Earth, 111(B9), B09404. https://doi.org/10.1029/2005JB003976.
Tomek, Č., Dvořáková, L., Ibrmajer, I., Jiříček, R., & Koráb, T. (1987). Crustal profiles of active continental collision belt. Czechoslovak deep seismic reflection profiling in the West Carpathians. Geophysical Journal International, 89(1), 383—388. https://doi.org/10.1111/j.1365-246X.1987.tb04435.x.
Tomek, Č., Ibrmajer, I., Koráb, T., Biely, A., Dvořáková, L., Lexa, J., & Zbořil, A. (1989). Crustal structures of the West Carpathians on deep seismic line 2T. Mineralia Slovaca, 21, 3—26.
Vozár, J., & Šantavý, J. (Eds.) (1999). Atlas hlbinnych reflexny chseizmickych profilov Západnych Karpáta ich interpretacia. Minist. živ. prostredia SR, 76 p.
Yegorova, T.P., Bayer, U., Thybo, H., Maystrenko, Y., Scheck-Wenderoth, M., & Lyngsie, S.B. (2007). Gravity signals from the lithodphere in the Central European Basin System, Tectonophysics, 429(1-2), 133—163. https://doi.org/10.1016/j.tecto.2006.10.002.
Yegorova, T.P., Stephenson, R.A., Kostyuchenko, S.L., Baranova, E.P., Starostenko, V.I., & Popolitov, K.E. 2004). Structure of the lithosphere below the southern margin ofthe East European Craton (Ukraine and Russia) from gravity and seismic data. Tectonophysics, 381(1-4),
—100. https://doi.org/10.1016/j.tecto.2002. 08.003.
Zanolla, C., Braitenberg, C., Ebbing, J., Bernabini, M., Bram, K., Gabriel, G., Götze, H.-J., Giammetti, S., Meurers, B., Nicolich, R., & Palmieri, F. (2006). New gravity maps of the Eastern Alps and significance for the crustal structures. Tectonophysics, 414(1-4), 127—143. https://doi.org/10.1016/j.tecto.2005.10.012.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).