Тривимірна густинна модель осадового заповнення Карпатсько-Паннонського регіону
DOI:
https://doi.org/10.24028/gj.v44i6.273639Ключові слова:
тривимірне моделювання, густина, залишкове гравітаційне поле (stripped gravity map), неоген-четвертинні відклади (Паннонський басейн, Трансильванська западина, Закарпатський прогин), моласові відклади Передкарпатського прогину, флішові відклади Зовнішніх Карпат, Карпатсько-Паннонський регіонАнотація
Стаття присвячена побудові та розрахункам тривимірної густинної моделі осадового заповнення Карпатсько-Паннонського регіону з метою отримання детальнішої схеми залишкового гравітаційного поля (stripped gravity map). Цьому сприяв глибокий аналіз великої кількості даних щодо висвітлення густинних властивостей неоген-четвертинних відкладів (Паннонський басейн, Трансильванська западина, Закарпатський прогин), моласових відкладів Передкарпатського прогину та флішових відкладів Зовнішніх Карпат у Чехії, Словаччині, Польщі, Україні. Базові дані для створення тривимірної густинної моделі осадових відкладів отримано в результаті лабораторних досліджень зразків порід з керна картувальних і глибоких розвідувальних свердловин, а також зразків порід, відібраних з численних відслонень у регіоні досліджень. Оцінено середнє значення густини для моласових і флішових відкладів румунської частини Карпат за результатами зіставлення літолого-стратиграфічних комплексів цих відкладів у суміжних районах східної частини Українських Карпат з подібними в Румунських Східних Карпатах та аналізу наявних даних стосовно густини Передкарпатського прогину та Флішових Карпат для української частини. Застосовано методику досліджень, яка є модифікацією геологічного редукування. Її суть полягає у послідовному розрахунку і вилученню з аномального гравітаційного поля тривимірного гравітаційного ефекту осадових шарів, параметризація яких визначена краще, ніж тих, що залягають глибше. В результаті формується залишкове гравітаційне поле, зумовлене глибинними неоднорідностями, які пов’язані з консолідованою частиною земної кори та верхньою мантією. Гравітаційні ефекти розраховано у масштабі 1:4 000 000 за мережею 10×10 км із застосуванням сучасного програмного комплексу GMT-Auto. Детальна схема залишкового (звільненого від впливу товщі осадових відкладів) гравітаційного поля Карпатсько-Паннонського регіону (stripped gravity map) є ефективним інструментом у розумінні джерел домінуючих гравітаційних особливостей досліджуваного регіону. Так, Паннонський басейн проявляється загальним максимумом з низкою локальних позитивних аномалій (більш як 50 мГал), які спостерігаються над невеликими западинами, заповненими малощільними потужними осадовими відкладами: Дунайською, Сольнокською, Мако, Бекеш і Закарпатським прогином. Феномен додатних, а не від’ємних значень залишкового гравітаційного поля для цих структур можна пояснити проникненням в осадовий покрив вулканічних порід або наявністю тіл високої густини з особливим петрофізичним складом (метаморфічні комплекси?) в консолідованій частині земної кори. Іншою причиною може бути вплив регіонального фону, який зумовлений підніманням поділу Мохо в Паннонському басейні до глибини 24—26 км. Гравітаційний мінімум Західних Карпат, який на схемі аномального гравітаційного поля складається з двох частин (північної і південної), відображається одним інтенсивним мінімумом — південним (–60 мГал). Північна частина цього гравітаційного мінімуму практично знівельована після розрахунків гравітаційного ефекту осадового заповнення, тому можна припустити, що її джерелом є малощільні флішові і моласові відклади. Південну частину гравітаційного мінімуму Західних Карпат можна пояснити дефіцитом мас у консолідованій частині земної кори. Навіть після вивільнення від впливу товщі осадових відкладів інтенсивність гравітаційних мінімумів Східних (–80 мГал) і Південних (–100 мГал) Карпат залишилась великою, тому можна припустити, що вони зумовлені не тільки низькими значеннями густини осадових відкладів Зовнішніх Карпат і Передкарпатського прогину, а й додатковим гравітаційним ефектом глибинних неоднорідностей консолідованої частини земної кори (а можливо, і верхньої мантії).
Посилання
Andreeva-Gryhorovych, A.S., Vashchenko, V.O., Hnylko, O.M., & Trofymovich, N.A. (2011). Stratigraphy of Neogene sediments of the Ukrainian Carpathians and Subcarpathians. Tektonika i stratyhrafiya, (38), 67—77 (in Ukrainian).
Bilichenko, V.Ya., Vus, M.I., & Vulchin, M.G. (1972). On the results of gravimetric studies carried out by the Uzhgorod gravimetric party No. 61/71 in the Transcarpathian trough on the Beregovo-Svalyava-Perechin-Uzhgorod area in 1971. Report. Part I. Lvov, 68 p. (in Russian).
Bilichenko, V.Ya., Kolesnichenko, O.V., & Demchishin, V.A. (1974). On the results of gravimetric studies carried out by the Zabolotovskaya gravimetric party No. 61/73 in the Cis-Carpathian trough on the Selyatyn-Kosov-Drachinets-Krasnoilsk area in 1973. Report. Part I. Lvov, 72 p. (in Russian).
Bilichenko, V.Ya., Protsak, P.T., & Demchishin, V.A. (1978). On gravimetric studies in the northwestern part of the Carpathian trough, carried out by gravimetric team No. 61/77 in 1977. Report. Vol. I. Lvov, 71 p. (in Russian).
Bilichenko, V.Ya., Protsak, P.T., & Demchishin, V.A. (1979). On gravimetric studies carried out in the northwestern part of the Carpathian trough and the band of its junction with the platform, gravimetric batch No. 61/78 in 1978. Report. Vol. I. Lvov, 62 p. (in Russian).
Bobrovnik, M.D. (1973). Some data on reservoir properties of flysch Carpathian rocks. In Prospects for oil and gas potential and the direction of regional and exploration work for oil and gas in the Ukrainian Carpathians (pp. 15—19). Kiev: Ed. of the Ukrainian Research and Geological Survey Institute (in Russian).
Borodatyy, I.I., Eikhberg, Yu.Ya., Stolyarova, E.N., Goshchitskaya, G.V., & Kokhanovskaya, L.V. (1965). Generalization, operational analysis and geological interpretation of seismic and gravimetric surveys for individual regions of the Western regions of the Ukrainian SSR. Report on the work of the thematic party No. 100/64. Funds ZUGRE. Lvov: State Geological Committee of the USSR, State Production Geological Committee of the Ukrainian SSR, West Ukrainian Geophysical Exploration Expedition, 202 p. (in Russian).
Vysotskiy, I.V., Glushko, V.V., & Patrouts, I. (1963). Miocene of the foothill foredeep of the Eastern Carpathians. Sovetskaya geologiya, (9), 12—29 (in Russian).
Glushko, V.V., & Kruglov, S.S. (Eds.). (1971). Geological structure and fossil fuels of the Ukrainian Carpathians. Moscow: Nedra, 392 p. (in Russian).
Hnylko, O. (2010). On the north-eastern boundary of the Krosno tectonic zone in the Ukrainian Carpathians. Heolohiya i heokhimiya horyuchykh kopalyn, (2), 44—57 (in Ukrainian).
Hnylko, O.M. (2017). Structures of the lateral extrusion in the Carpathians. Geodynamics, (1), 16—25. https://doi.org/10.23939/jgd2017.01. 018 (in Ukrainian).
Hnylko, O.M. (2011). Tectonic zoning of the Carpathians in terms of the terrane tectonics section 1. Main units of the Carpathian building. Geodynamics, (1), 47—56. https://doi.org/10. 23939/jgd2011.01.047 (in Ukrainian).
Gnilko, O.M., Gnilko, S.R., & Generalova, L.V. (2015). The formation of structures of cliff zones and inter-cliff flysch of the Inner Ukrainian Carpathians is the result of convergence and collision of microcontinental terranes. Vestnik Sankt-Peterburgskogo universiteta. Ser. 7 (Geologiya), (2), 4—24 (in Russian).
Hontovyi, I.Z. (1961). Rock density of the Precarpathian Trough. Geologicheskiy Zhurnal, XXI(4), 30—39 (in Ukrainian).
Detailing of the identified oil and gas prospective objects within the Putylska Square by Paleogene, Cretaceous and Jurassic deposits. (2005). Report on research work. Head O.P. Petrovsky. Ivano-Frankivsk, 95 p. (in Ukrainian).
Yegorova, T.P., Gobarenko, B.S., Yanovskaya, T.B., & Baranova, K.P. (2012). The structure of the lithosphere of the Black Sea by the results of 3D gravity analysis and seismic tomography. Geofizicheskiy Zhurnal, 34(5), 38—–59. https://doi.org/10.24028/gzh.0203-3100.v34i5.2012.116662 (in Russian).
Zayats, H.B. (2013). The deep structure of the depth of the Western region of Ukraine based on seismic research and the directions of exploration for oil and gas. Lviv: Tsentr Evropy, 80 p. (in Ukrainian).
Kruglov, S.S. (1973). The main features of the structure of the flysch complex of the Ukrainian Carpathians. In Prospects for oil and gas potential and the direction of regional and exploration work for oil and gas in the Ukrainian Carpathians (pp. 19—27). Kiev: Ed. of the Ukrainian Research and Geological Survey Institute (in Russian).
Kruglov, S.S., Smirnov, S.E., Spitkovskaya, S.M., Filyshtinskiy, L.E., & Khizhnyakov, A.V. (1985). Geodynamics of the Carpathians. Kiev: Naukova Dumka, 136 p. (in Russian).
Kulchitskiy, Ya.O. (1966). On the integumentary-scaly structure of the southern slope of the Ukrainian Carpathians. Geologicheskiy sbornik L’vovskogo geologicheskogo obshchestva, (10), 79—93 (in Russian).
Kutas, R.I. (2016). Geothermal Conditions and Mesozoic-Cainozoic Evolution of the Carpatho-Pannonian Region. Geofizicheskiy Zhurnal, 38(5), 75—107. https://doi.org/10.24028/gzh.0203-3100.v38i5.2016.107823 (in Russian).
Chekunov, A.V. (Ed.). (1994). Lithosphere of Central and Eastern Europe. Young platforms and Alpine fold belt. Kiev: Naukova Dumka, 331 p. (in Russian).
Makarenko, I.B. (2019). Heterogeneity of the Earth’s crust of Ukraine and adjacent regions inferred from 3D gravityl modeling. Doctor’s thesis. Kyiv, 380 p. (in Ukrainian).
Makarenko, I.B. (2022). The density of sedimentary complexes of the Carpathian-Pannonian region (generalization). Geofizicheskiy Zhurnal, 43(6), 120—161. https://doi.org/10.24028/gzh.v43i6.251556 (in Russian).
Makarenko, I.B., Starostenko, V.I., Kuprienko, P.Ya., Savchenko, O.S., & Legostaeva, O.V. (2021). Heterogeneity of the Earth’s crust of Ukraine and the adjacent regions as a result of 3D gravity modeling. Kyiv: Naukova Dumka, 204 p. (in Ukrainian).
Melnichuk, M.I., Kuznetsova, V.G., Somov, V.I., Maksimchuk, V.E., Nagirnyy, T.S., & Sokurova, A.N. (1975). Connection of physical fields with the deep structure of the Carpathian region. Final report 1971—1975, 248 p. (in Russian).
Nikolaev, V.G. (1986). Pannonian basin (structure of the sedimentary cover and development). Moscow: Nauka, 103 p. (in Russian).
Conducting an integral interpretation of a complex of geological and geophysical data on seismic profiles of the South-Bushtyna structure in the Solotvyn depression with the aim of forecasting promising oil and gas objects. (2005). Report on research work. Head O.P. Petrovsky. Ivano-Frankivsk, 101 p. (in Ukrainian).
Conducting an integral interpretation of a complex of geological and geophysical data on seismic profiles of the Orkhovytsia-Dubanevytska area for the purpose of forecasting promising oil and gas objects in the Jurassic and Sarmatian deposits. (2008). Report on research work. Head O.P. Petrovsky. Ivano-Frankivsk, 132 p. (in Ukrainian).
Carrying out a detailed complex interpretation of geological and geophysical data on seismic profiles of the East Dolyna area with the aim of forecasting promising oil and gas facilities. Report on research work. (2003). Head O.P. Petrovsky. Ivano-Frankivsk, 93 p. (in Ukrainian).
Sovchik, Ya.V. (1976). On comparison of the Paleogene flysch of the Ukrainian and Romanian Carpathians. Geologicheskiy Zhurnal, 36(6), 46—54 (in Russian).
Starostenko, V.I., Legostaeva, O.V., Makarenko, I.B., & Savchenko, A.S. (2015). Software system for automated data interpretation of potential fields (GMT-Auto). Geofizicheskiy Zhurnal, 37(1), 42—52. https://doi.org/10.24028/gzh.0203-3100.v37i1.2015.111322 (in Russian).
Starostenko, V.I., Sharypanov, V.M., Savchenko, A.S., Legostaeva, O.V., Makarenko, I.B., & Kuprienko, P.Ya. (2011). On the automated interactive processing of graphic images of geological and geophysical objects. Geofizicheskiy Zhurnal, 33(1), 54—61. https://doi.org/10.24028/ gzh.0203-3100.v33i1.2011.117325 (in Russian).
Starostenko, V.I., Sharypanov, V.M., Sharypanov, A.V., Savchenko, A.S., Legostayeva, O.V., Makarenko, I.B., & Kuprienko, P.Ya. (2016). Interactive software package Isohypse for three-dimensional geological and geophysical models, and its practical use. Geofizicheskiy Zhurnal, 38(1), 30—42. https://doi.org/10.24028/ gzh.
-3100.v38i1.2016.107720 (in Russian).
Sollogub, V.B., Guterh, A., & Prosen, D. (Eds.). (1978). The structure of the earth’s crust and upper mantle of Central and Eastern Europe. Kiev: Naukova Dumka, 271 p. (in Russian).
Subbotin, S.I. (1979). Issues of gravimetry, studies of the Earth’s crust and mantle, the theory of tectogenesis: selected works. Kiev: Naukova Dumka, 376 p. (in Russian).
Subbotin, S.I. (1955). Deep structure of the Soviet Carpathians and adjacent territories according to geophysical research data. Kiev: Publ. House of the Academy of Sciences of the Ukrainian SSR, 260 p. (in Russian).
Scheme of gravity field of Ukraine. 1:1 000 000. (2002). Northern State Regional Geological Enterprise «Northern Geology» of the Ministry of Natural Resources of Ukraine (in Ukrainian).
Fedushchak, M.Yu. (1962). Conditions for the formation of exotic conglomerates of the Vorotyshchen series of the Precarpathia. Kyiv: Publ. House of the Academy of Sciences of the Ukrainian SSR, 112 p. (in Ukrainian).
Khain, V.E. (2001). Tectonics of continents and oceans. Moscow: Nauchny Mir, 605 p. (in Russian).
Khomenko, V.I. (1971). Deep structure of Transcarpathian depression. Kyiv: Naukova Dumka, 230 p. (in Ukrainian).
Tsar, M.М. (2018). Conglomerates with the exotic material in the Ukrainian Carpathians — distribution, composition, probable genesis. Geodynamics, (1), 40—50. https://doi.org/10.23939/jgd2018.01.040 (in Ukrainian).
Shlapinskyi, V.E. (2018). Pokuttia deep fault and its influence on tectonics and oil- and gas-bearing of the south-eastern segment of the Carpathians. Geodynamics, (2), 49—64. https://doi.org/10.23939/jgd2018.02.049 (in Ukrainian).
Alasonati Tašárová, Z., Afonso, J.C., Bielik, M., Götze, H.J., & Hók, J. (2009). The lithospheric structure of the Western Carpathian-Pannonian region based on the CELEBRATION 2000 seismic experiment and gravity modeling. Tectonophysics, 475, 454—469, https://doi.org/10.1016/j.tecto.2009.06.03.
Bielik, M., Kloska, K., Meurers, B., Švancara, J., Wyberaniec, S., Fancsik, T., Grad, M., Grand, T., Guterch, A., Katona, M., Królikowski, C., Mikuška, J., Pašteka, R., Petecki, Z., Polechońska, O., Ruess, D., Szalaiová, V., Šefara, J., & Vozár, J. (2006). Gravity anomaly map of the CELEBRATION 2000 region. Geologica Carpathica, 57, 145—156.
Bielik, M. (l988). A preliminary stripped gravity map of the Pannonian Basin. Physics of the Earth and Planetary Interiors, 51(1-3), 185—189. https://doi.org/10.1016/0031-9201(88)90043-X.
Bielik, M., Makarenko, I., Legostaeva, O., Starostenko, V., Dérerová, J., & Šefara, J. (2004b). Stripped gravity map of the Carpathian-Pannonian Basin Region. In: Proceedings of the 1st Workshop on International Gravity Field Research. Zentralanstalt fur Meteorologie und Geodynamik Österreichische Beiträgezu Meteorologie und Geophysik, 31, 107—117.
Bielik, M., Makarenko, I., Starostenko, V., Legostaeva, O., Dérerová, J., Šefara, J., & Pašteka, R. (2005). New 3D gravity modeling in the Carpathian-Pannonian basin region. Contributions to Geophysics and Geodesy, 35(10), 65—78.
Bielik, M., Šefara, J., Kováč, M., Bezák, V., & Plašienka, D. (2004a).The Western Carpathians — interaction of Hercynian and Alpine processes. Tectonophysics, 393(1-4), 63—86. https://doi.org/10.1016/j.tecto.2004.07.044.
Briceag, A., Jipa, D., & Melinte, M.C. (2009). Early Cretaceous deposits of the Ceahlau Nappe (Romanian Bend region). Geo-Eco-Marina, 15, 177—185.
Bucha, V., Blízkovsky, M., Burda, M., Krs, M., Suk, M., & Sefara, J. (1994). Crustal structure of the Bohemian Massif and the West Carpathians. Springer-Verlag and Academia. Berlin-Heidelberger-New York-Praha, 355 p.
Bucur, J. (1971). Observaţii Privind nomenclatura tectonică inflischulcretacicsi paleogen din Carpatii Orientali. Dăriseamăsedint sedint. Inst. geol. 1969—1970. Vol. 57. No. 5. Р. 23—32.
Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 1—56. https://doi.org/10. 1016/j.palaeo.2004.02.033.
Dérerová, J., Bielik, M., Kohút, I., & Godová, D. (2019). Calculation of temperature distribution and rheological properties of the lithosphere along transect IV in the Western Carpathian-Pannonian Basin region. Contributions to Geophysics and Geodesy, 49(4), 497—510. https://doi.org/10.2478/congeo-2019-0026.
Dirkzwager, J.B., Stephenson, R.A., & Legostaeva, O.V. (2000). The pre-Permian residual gravity field for the Dutch onshore and adjacent offshore. Global and Planetary Change, 27(1-4), 53—66. https://doi.org/10.1016/S0921-8181(01)00059-5.
Ebbing, J., Braitenberg, C., & Götze, H.-J. (2006). The lithospheric density structure of the Eastern Alps. Tectonophysics, 414(1-4), 145—155. https://doi.org/10.1016/j.tecto.2005.10.015.
Granser, H. (1987). Three-dimensional interpretation of gravity data from sedimentary Basins using an exponential density-depth function. Geophysical Prospecting, 35(9), 1030—1041. https://doi.org/10.1111/j.1365-2478.1987.tb00858.x.
Hammer, S. (1963). Deep gravity interpretation by stripping. Geophysics, 28(3), 369—378. https://doi.org/10.1190/1.1439186.
Horváth, F. (1993). Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics, 226(1-4), 333—357. https://doi.org/10.1016/0040-1951(93)90126-5.
Horváth, F., & Galacz, A. (Eds.). (2006). The Carpathian-Pannonian Region: A Review of Mesozoic-Cenozoic Stratigraphy and Tectonics. Vol. 1. Stratigraphy. Vol. 2. Geophysics, Tectonics, Facies, Paleogeography. Budapest: Hantken Press, 625 p.
Hrušecký, I. (2000). Central part of the Danube basin in Slovakia. Geophysical and geological model in regard to hydrocarbon prospection. Exploration Geophysics, Remote Sensing and Environment, VI, 2—55.
Ibrmajer, J. (1981). Geological interpretation of gravity maps of Czechoslovakia. In Zátopek, A. (Ed.), Geophysical Syntheses in Czechoslovakia (pp. 135—148). Bratislava: Veda.
Kilényi, É, & Šefara, J. (Eds.). (1989). Pre-Tertiary basement contour map of the Carpatian Basin beneath Austria, Czechoslovakia and Hungary. 1:500000. ELGI, Budapest.
Kováč, M. (2000). Geodynamický, paleografický a štruktúrny vývoj karpatsko-panónskej oblasti v miocéne. Bratislava: Veda, 202 p.
Krajnak, М., Bielik, M., Makarenko, I., Legostaeva, O., Starostenko, V.I., & Bosansky, M. (2012). The first stripped gravity map of the Turcianska Kotlina Basin. Contributions to Geophysics and Geodesy, 42(2), 181—199.
Krejc, O., & Jurova, Z. (1997). Strukturni mapa baze sedimentu flysovych prikrovu s vyznacenim prognoznich ploch. Manuskript of CGU Brno.
Królikovski, C., & Petecki, Z. (2001). Recent results of the gravity and magnetotelluric modelling. lithosphere structure in the Polish Carpathians. Slovak Geol. Mag., 7, 131—138.
Królikowski, C., & Petecki, Z. (2002). Lithospheric structure across the Trans-European Suture Zone in NW Poland based on gravity data interpretation. Geological Quarterly, 46(3), 235—245.
Lankreijer, A., Kováč, M., Cloetingh, S., Pitoňák, P., Hlôška, M., & Bierman, C. (1995.) Quantitative subsidence analysis and forward modeling of the Vienna and Danube Basins: thin-skinned versus thick skinned extension. Tectonophysics, 252(1-4), 433—451. https://doi.org/10.1016/0040-1951(95)00099-2.
Lenkey, I. (1999). Geothermics of the Pannonian Basin and its bearing on the tectonics of Basin evolution. Netherlands Research Scool of Sedimentary geology publication No. 990112. Vrije Universiteit Amsterdam, 215.
Lillie, J.R., Bielik, M., Babuška, V., & Plomerová, J. (1994). Gravity modeling of the Lithosphere in the Eastern Alpine — Western Carpathian — Pannonian Basin Region. Tectonophysics, 231(4), 215—235. https://doi.org/10.1016/0040-1951(94)90036-1.
Makarenko, I., legostaeva, O., Bielik, M., Starostenko, V., Dérerová, J., & Sefara, J. (2002). 3D gravity effects of the sedimentary complexes in the Carpathian-Pannonian region. Geologica Carpathica, 53 (Spec. Iss.), CD ROM.
Matenco, L.C. (1997). Tectonic evolution of the outer Romanian Сarpathians: Constrain from kinematic analysis and exural modeling. Vrije Universiteit, Amsterdam, 160 p.
Mocanu, V., & Radulescu, F. (1994). Geophysical features of the Romanian territory. Romanian Journal of Tectonics and Regional Geology, 75, 17—36.
Oszczypko, N., Uchman, A., & Bubniak, I. (2012). Foreland provenance of thick conglomerates in the early stage of Carpathian Foredeep development: the case of the Sloboda conglomerate (lower Miocene), western Ukraine. Geological Quarterly, 56(4), 789—802.
Oszczypko, N., Uchman, A., & Bubniak, I. (2014). The Dobrotiv Formation (Miocene) in the Boryslav-Pokuttya and Sambir nappes of the Ukrainian Carpathians: a record of sedimentary environmental change in the development of the Carpathian Foredeep Basin. Geological Quarterly, 58(3), 393—408.
Poprawa, D., & Nemcok, J. (1989). Geological atlas of the Western Outer Carpathians and their foreland. PIG Warszawa, GÚDŠ Bratislava, UUG Praha, 9.
Royden, L.H., & Horváth, F. (Eds.). (1988). The Pannonian Basin: a Case Study in Basin Evolution. Amer. Assoc. Petr. Geol. Mem., 45. 375 p.
Ryłko, W., & Tomaś, A. (2005). Basement structure below the West-Carpathian — East-Carpathian orogen junction (eastern Poland, north-eastern Slovakia and western Ukraine). Geologica Carpathica, 56(1), 29—40.
Šefara, J., Bielik, M., Bodnar, J., Cizek, P., Filo, M., Gnojek, I., Grecula, P., Halmesova, S., Husak, L., Janostik, B., Kral, M., Kubes, P., Kucharic, L., Kurkin, M., Lesko, B., Mikuska, J., Muska, P., Obernauer, D., Pospísil, L., Putis, M., Sutora, A., & Velich, R. (l987). Strukturno-tektonicka mapa vnutornych Zapadnych Karpat pre ucely prognozovania lozísk — geofyzikalne interpretacie. SGU Bratislava-Geofyzika, n.p. Brno-Uran. priemysel Liberec, 267 p.
Šefara, J., & Szabo, Z. (1997).Gravity maps — border zone of Austria, Slovakia and Hungary. Geophysical Transactions ELGI, 41, 101—122.
Starostenko, V., Buryanov, V., Makarenko, I., Rusakov, O., Stephenson, R., Nikishin, A., Georgiev, G., Gerasimov, M., Dimitiu, R., Legostaeva, O., Pchelarov, V., & Sava, C. (2004). Topography of the crust-mantle boundary beneath the Black Sea Basin. Tectonophysics, 381(1-4), 211—233. https://doi.org/10.1016/j.tecto.2002. 08.001.
Starostenko, V., Legostaeva, O., Makarenko, I., Savchenko, A., & Kuprienko, P. Ya. Automated software system for interpretation of the potential fields (GMT-Auto). (2015). 7th BgGS National Conference with International Participation «GEOPHYSICS 2015». Sofia, May 20—23. CD-ROM.
Szafián, P. (1999). A case study in the Pannonian Basin and the surrounding mountain belt. Netherlands Research Scool of Sedimentary geology publication No. 990102. Vrije Universiteit Amsterdam, 154.
Szafián, P., Horváth, F. (2006) Crustal structure in the Carpatho-Pannonian region: inisights from three-dimensional gravity modelling and their geodynamic significance. Int J Earth Sci (Geol Rundsch) 95: 50—67 DOI 10.1007/s00531-005-0488-x.
Szafián, P., Horváth, F., & Cloetingh, S. (1997) Gravity constrains on the crustal structure and slab evolution along a trans-Carpathian transect. Tectonophysics, 272(2-4), 233—247. https://doi.org/10.1016/S0040-1951(96)00260-0.
Szalaiová, E., Bielik, M., Makarenko, I., Legostaeva, O., Hók, J., Starostenko, V., Šujan, M., & Šefara, J. (2008) Calculation of a stripped gravity map with a high degree of accuracy: a case study of Liptovská Kotlina Basin (Northern Slovakia). Geological Quarterly, 52(2), 103—114.
Tassara, A., Götze, H.-J., Schmidt, S., & Hackney, R. (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. Journal of Geophysical Research: Solid Earth, 111(B9), B09404. https://doi.org/10.1029/2005JB003976.
Tomek, Č., Dvořáková, L., Ibrmajer, I., Jiříček, R., & Koráb, T. (1987). Crustal profiles of active continental collision belt. Czechoslovak deep seismic reflection profiling in the West Carpathians. Geophysical Journal International, 89(1), 383—388. https://doi.org/10.1111/j.1365-246X.1987.tb04435.x.
Tomek, Č., Ibrmajer, I., Koráb, T., Biely, A., Dvořáková, L., Lexa, J., & Zbořil, A. (1989). Crustal structures of the West Carpathians on deep seismic line 2T. Mineralia Slovaca, 21, 3—26.
Vozár, J., & Šantavý, J. (Eds.) (1999). Atlas hlbinnych reflexny chseizmickych profilov Západnych Karpáta ich interpretacia. Minist. živ. prostredia SR, 76 p.
Yegorova, T.P., Bayer, U., Thybo, H., Maystrenko, Y., Scheck-Wenderoth, M., & Lyngsie, S.B. (2007). Gravity signals from the lithodphere in the Central European Basin System, Tectonophysics, 429(1-2), 133—163. https://doi.org/10.1016/j.tecto.2006.10.002.
Yegorova, T.P., Stephenson, R.A., Kostyuchenko, S.L., Baranova, E.P., Starostenko, V.I., & Popolitov, K.E. 2004). Structure of the lithosphere below the southern margin ofthe East European Craton (Ukraine and Russia) from gravity and seismic data. Tectonophysics, 381(1-4),
—100. https://doi.org/10.1016/j.tecto.2002. 08.003.
Zanolla, C., Braitenberg, C., Ebbing, J., Bernabini, M., Bram, K., Gabriel, G., Götze, H.-J., Giammetti, S., Meurers, B., Nicolich, R., & Palmieri, F. (2006). New gravity maps of the Eastern Alps and significance for the crustal structures. Tectonophysics, 414(1-4), 127—143. https://doi.org/10.1016/j.tecto.2005.10.012.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
1. Автори зберігають за собою авторські права на роботу і передають журналу право першої публікації разом з роботою, одночасно ліцензуючи її на умовах Creative Commons Attribution License, яка дозволяє іншим поширювати дану роботу з обов'язковим зазначенням авторства даної роботи і посиланням на оригінальну публікацію в цьому журналі .
2. Автори зберігають право укладати окремі, додаткові контрактні угоди на не ексклюзивне поширення версії роботи, опублікованої цим журналом (наприклад, розмістити її в університетському сховищі або опублікувати її в книзі), з посиланням на оригінальну публікацію в цьому журналі.
3. Авторам дозволяється розміщувати їх роботу в мережі Інтернет (наприклад, в університетському сховище або на їх персональному веб-сайті) до і під час процесу розгляду її даними журналом, так як це може привести до продуктивної обговоренню, а також до більшої кількості посилань на дану опубліковану роботу (Дивись The Effect of Open Access).