Low-frequency scattering on a half-space filled with periodic fluid-solid medium with dipped layers
DOI:
https://doi.org/10.24028/gzh.0203-3100.v39i4.2017.107508Keywords:
periodical solid-fluid medium, dispersion equation, scattering, reflection and refraction coefficientsAbstract
A low-frequency effective model has been developed for a medium with periodical liquid and solid layers with the slip between layers. It is shown that for an effective periodically n-layered medium with solid dipped layers with slip there exist n+1 plane waves with a fixed horizontal slowness that propagate downward. The boundary conditions are determined for low-frequency scattering at the boundary between a solid half-space and a half-space filled with an effective medium. These conditions depend on the dip angle of the layers and their filling. Based on the boundary conditions, linear systems of equations for the reflection and refraction coefficients are derived. Low-frequency scattering on a half-space with dipped solid layers with the slip is described by a system of n+3 equations with n+3 unknowns. In the presence of liquid layer, the number of equations and unknowns is equal to n+2. If the lower half-space consists of horizontal layers, the number of equations and unknowns is equal to 3. Explicit formulas for the roots of this system of equations are obtained for the case when the layers are horizontal. The theory is demonstrated on various examples of calculating the reflection and refraction coefficients.
References
Aki K., Richards P., 1983. Quantitative seismology. Theory and methods. Moscow: Mir, 520 p. (in Russian).
Molotkov L. A., 2001. The study of wave propagation in porous and fractured media based on effective models of BIO and layered media. St. Petersburg: Nauka, 348 p. (in Russian).
Molotkov L. A.,1979. Equivalence of periodically layered and transversally isotropic media. Zapiski nauchnykh seminarov LOMI 89, 219—233 (in Russian).
Molotkov L. A., 1994. On an effective model describing a layered periodic elastic medium with slide contacts on the interfaces. Zapiski nauchnykh seminarov POMI 210, 192—212 (in Russian).
Molotkov L. A., 1991. New method for deriving equations of an effective average model of periodic media. Zapiski nauchnykh seminarov LOMI 195, 82—102 (in Russian).
Molotkov L. A., Bakulin A. V., 1995. The effective model of a stratified solid-fluid medium as a special case of the Biot model. Zapiski nauchnykh seminarov POMI 230, 172—195 (in Russian).
Molotkov L. A., Khilo A. E., 1984. Single-phase and multiphase effective models describing periodic media. Zapiski nauchnykh seminarov LOMI 140, 105—122 (in Russian).
Molotkov L. A., Perekareva M. N., 2006. Investigation of the wave field in an effective model of a layered elastic-fluid medium. Zapiski nauchnykh seminarov POMI 332, 175—192 (in Russian).
Roganov Yu. V., Roganov V. Yu., 2016. Wave propagation in periodic fluidsolid layered media. Geofizicheskiy zhurnal 38 (6), 101—117 (in Russian).
Backus G. E., 1962. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 67, 4427—4440. doi: 10.1029/JZ067i011p04427.
Corredor R., Santos J., Gauzellino P., Carcione J., 2016. Validation of the boundary conditions to model the seismic response of fractures. Geophys. Prosp. 64, 1149—1165. doi:10.1111/1365-2478.12375.
Deresiewicz H., Rice J. T., 1960. The effect of boundaries on wave propagation in liquid-filled porous solids: I. Reflection of plane waves at a true plane boundary. Bull. Seismol. Soc. Am. 50, 599—607.
Lovera O. M., 1987. Boundary conditions for a fluid-saturated porous solid. Geophysics, 52 (2), 174—178.
Molotkov L. A., 1982. Equivalence of periodically layered and transversally isotropic media. J. Soviet Math. 19(4), 1454—1466. doi: 10.1007/BF01085033.
Molotkov L. A., 1992. New method for deriving equations of an effective average model of periodic media. J. Soviet Math., 62(6), 3103—3107. doi: 10.1007/BF01095684.
Molotkov L. A., 1997. On an effective model describing a layered periodic elastic medium with slide contacts on the interfaces. J. Math. Sci. 83(2), 288—301. doi: 10.1007/BF02405824.
Molotkov L. A., Bakulin A. V., 1998. The effective model of a stratified solid-fluid medium as a special case of the Biot model. J. Soviet Math. 91(2), 2812—2827. doi: 10.1007/BF02433997.
Molotkov L. A., Khilo A. E., 1986. Single-phase and multiphase effective models describing periodic media. J. Soviet Math., 32 (2), 173—185. doi: 10.1007/BF0108415.
Molotkov L. A., Perekareva M. N., 2007. Investigation of the wave field in an effective model of a layered elastic-fluid medium. J. Math. Sci. 142(6), 2620—2629. doi:10.1007/s10958-007-0150-1.
Nakagawa S., Schoenberg M., 2007. Poroelastic modeling of seismic boundary conditions across a fracture. J. Acoust. Soc. Am. 122(2), 831—847. doi: 10.1121/1.2747206.
Rajesh S., 2015. Reflection/refraction at the interface of an elastic solid and a partially saturated porous solid containing liquid filled bound pores and a connected pore space saturated by two-phase fluid. Lat. Am. J. Solids Struct. 12(10), 1870—1900. doi: 10.1590/1679-78251834.
Roganov Yu., Stovas A., 2012. Low-frequency wave propagation in periodically layered media. Geophys. Prosp. 60, 825—837.
Schoenberg M., 1983. Reflection of elastic waves from periodically stratified media with interfacial slip, Geophys. Prosp. 31, 265—292. doi: 10.1111/j.1365-2478.1983.tb01054.x.
Schoenberg M., 1984. Wave propagation in alternating solid and fluid layers. Wave Motion 6, 303—320. doi: 10.1016/0165-2125(84) 90033-7.
Schoenberg M., Muir F., 1989. A calculus for finely layered anisotropic media. Geophysics 54(5), 581—589. doi: 10.1190/1.1442685.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).