Structural features of continental and oceanic lithospphere and their nature
DOI:
https://doi.org/10.24028/gzh.0203-3100.v41i2.2019.164448Keywords:
deep geophysics, earth’s crust, upper mantle, petrophysics, deep fluids, global folds, degassing and expending of the EarthAbstract
The deep geological and geophysical studies of the continents and oceans have revealed a number of well-defined new regularities in the structure of the crust and upper mantle that do not find a clear explanation in the modern geodynamic concepts. The regularities are the following. The Earth is divided into two hemispheres with different structure of the lithosphere: the Pacific and Indo-Atlantic hemisphere. The Pacific hemisphere is surrounded by a ring of the tectonically active zones with high seismicity (Benioff Zones). The system of the mid-ocean ridges with approximately equal distances between them, 90°, is symmetrical relatively to the South Pole. The crust in the oceans is different in age and composition, it identified the remnants of an ancient (Archaean) crust and large areas of subcontinental crust. The continents are characterized by the large thickness of the lithosphere (more than 200 km), composed of the lower density depleted matter. Experimental data on petrophysical properties of the crust and upper mantle matter at high pressure and temperature, the data on deep xenoliths, geochemical studies of natural gases have showen a large role of deep energy-intensive fluids in the formation of the sialic crust and depleted mantle rocks.
These data give possibility to explain the continents and oceans origin. The irregular in space the Earth degassing results in different lithosphere types formation: the thick granite-gneiss crust and the lower density depleted mantle of the continents were created in the areas of the higher deep fluids flows; in the areas of the lower fluids advection the primary oceanic crust was preserved and only some separate spots of the transition crust appeared. The lower density of the continental «roots» was the main factor in the formation of continents: the lower density lithosphere led to its emerging in respect to the oceanic lithosphere. Two hemispheres with different lithosphere structure were formed may be due to the elliptical form of the orbit, causing periodic changes of the planet accelerations. The structural symmetry of the global rift system relative to the planet poles gives possibility to explain its origin by the expansion of the planet.
References
Artyushkov, E. V., & Poselov, V. A. (2010). Formation of deep-water depressions in the Russian sector of the Amerasian basin as a result of eclogitization of the lower part of the continental crust. Doklady RAN, 431(5), 680―684 (in Russian).
Baranova, E. P., Yegorova, T. P., & Omelchenko, V. D. (2011). Detection of a waveguide in the basement of the northwestern shelf of the Black Sea according to the results of reinterpretation of the DSS materials of profiles 26 and 25. Geofizicheskiy zhurnal, 33(6), 15―29. https://doi.org/10.24028/gzh.0203-3100.v33i6.2011.116790 (in Russian).
Beloussov, V. V. (1978). Endogenous regimes of continents. Moscow: Nedra, 262 p. (in Russian).
Beloussov, V. V. (1989). Fundamentals of geotectonics. Moscow: Nedra, 382 p. (in Russian).
Beloussov, V. V., & Pavlenkova, N. I. (1989). Types of the Earth’s crust of Europe. Geotektonika, (3), 3―14 (in Russian).
Blyuman, B. A. (2013). Basic problems of the ocean geology and geology of the continents. St. Petersburg: Publ. House VSEGEI, 399 p. (in Russian).
Blyuman, B. A. (2011). The Earth’s crust of the oceans. Data of the International programs of the deepwater drilling in the World Ocean. St. Petersburg: Publ. House VSEGEI, 344 p. (in Russian).
Blyuman, B. A. (2015). The evolution of events in the history of the Earth from 4.5 to 0.9 billion years. St. Petersburg: Publ. House VSEGEI, 311 p. (in Russian).
Bogdanov, N. A., & Dobretsov, N. L. (2002). Okhotsk oceanic volcanic plateau. Geologiya i geofizika, 43(2), 101—104 (in Russian).
Bortnikov, N. S., Sharkov, U. V., Bogatikov, O. A., Zinger, T. F., Lepekhina, E. N., Antonov, A. V., & Sergeev, S. A. (2008). Findings of young and ancient zircons in the gabroids of the Makarov Basin, Mid-Atlantic Ridge (Shrimp-II results U-PB-Dating). The value for understanding the deep geodynamics of modern oceans. Doklady AN, 421(2), 1―9 (in Russian).
Valyaev, B. I., & Dremin, I. S. (2015). The Earth’s degassing and nature of the processes of oil and gas accumulation (geochemical and geodynamic aspects). Geologiya i poleznyye iskopayemyye Mirovogo okeana, (2), 33―49 (in Russian).
Vanyan, L. L., & Pavlenkova, N. I. (2002). A layer of lower velocity and increased electrical conductivity at the base of the upper part of the Baltic shield crust. Fizika Zemli, (1), 1―9 (in Russian).
Vasiliev, B. I. (2009). Geological structure and origin of the Pacific Ocean. Vladivostock: Dalnauka, 560 p. (in Russian).
Vinnik, L. P., & Farra, V. (2002). Super-Deep low-frequency layer in the upper mantle of the ancient platforms. Electronic scientific and information journal «Vestnik OGGGGN RAN», (1) (in Russian).
Dmitrievsky, A. N., & Valyaev, B. M. (Eds.). (2006). Genesis of Hydrocarbon Fluids and Deposits. Moscow: GEOS, 315 p. (in Russian).
Glebovitskiy, V. A., Nikitina, L. P., & Khiltova, V. Ya. (2001). Thermal state of the mantle, underlying Precambrian and Phanerozoic structures (according to the data of garnet-orthopyroxene thermobarometry of xenoliths of garnet peridotites in kimberlites and alkaline basalts). Fizika Zemli, (3), 3―25 (in Russian).
Zverev, S. M., Kosminskaya, I. P., Tulina, Yu. V. (Eds.). (1996). Deep seismic sounding of the lithosphere on the Angola-Brazilian geotraverse. Moscow: Publ. House IFZ RAN, 145 p. (in Russian).
Gordienko, V. V. (2007). Advection-polymorphic hypothesis of processes in the tectonosphere. Kiev: Korwin Press, 172 p. (in Russian).
Gordienko, V. V., Zavgorodnyaya, O. V., Yakobi, N. M. (1982). Heat flow of continents. Kyiv: Naukova Dumka, 184 p. (in Russian).
Gufeld, I. L., & Matveeva, M. I. (2011). The barrier effect of degassing and destruction of the earth’s crust. Doklady AN, 438(2), 253―257 (in Russian).
Dmitrievskiy, A. N., & Valyaev, B. M. (Eds.). (2002). Earth Degassing: Geodynamics, Geofluids, Oil and Gas. Proceedings of the international conference of memory of academician P. N. Krapotkin, 20―24 May 2002. Moscow: GEOS, 471 p. (in Russian).
Yegorkin, A. V. (1999). Study of the mantle on the supperdeep profiles. Fizika Zemli, (7/8), 114―130 (In Russian)
Yegorkin, A. V., Kun, V. V., & Chernyshev, N. M. (1981). Absorption of longitudinal and transverse waves in the crust and upper mantle of the West Siberian plate and Siberian platform. Izvestiya AN SSSR. Fizika Zemli, (2), 37―50 (in Russian).
Yegorova, T. P., & Pavlenova, G. A. (2015). Seismic-density models of the earth’s crust and upper mantle of the Northern Eurasia on super-long seismic profiles «Kraton» and «Kimberlite». Fizika Zemli, (2), 98―115 (in Russian).
Ivanov, S. N. (1990). Separator (on the nature and meaning of the geophysical boundary K1). Doklady AN SSSR, 311(2), 428―431 (in Russian).
Kachemazov, G. G. (2016). The annihilating theory of the comparison of the Earth and the Moon. Things to think about. Redkiye zemli, (2), 132―139.
Kashubin, S. N., Pavlenkova, N. I., Petrov, O. V., Milshtein, E. D., Shokalsky, S. P., & Erinchik, Yu. M. (2013a). The crustal types in the Circumpolar Arctics. Regionalnaya geologiya i metallogeniya, (55), 5―20 (in Russian).
Kashubin, S. N., Sakulina, T. S., Lukashin, Yu. P., Pavlenkova, N. I. (2013b). Modern methods of conducting and interpreting deep seismic soundings in the marginal seas of Russia. In The relevance of the ideas of G. A. Gamburtseva in the XXI century (pp. 175―194). Moscow: Yanus-K (in Russian).
Kostyuchenko, S. L. (2010). Structure of the crust and underlying mechanisms of formation of Arctic continental sedimentary basins of Siberia. Regionalnaya geologiya i metallogeniya, (10), 125―135 (in Russian).
Kostyuchenko, S. L., & Morozov, A. F. (2007). Geological and geophysical images of the crust and upper mantle of the territory of Russia in maps and models. In: Models of the Earth’s crust and upper mantle based on the results of deep seismic profiling (pp. 157―168). St. Petersburg: VSEGEI Publ. House (in Russian).
Kremenetskiy, A. A., Ovchinnikov, L. N., & Borevskiy, L. V. (1987). Geologic-geophysical criteria of depth prediction according to the study ssrg-deep wells. In Methods and practices of studies of the deep structure of the subsoil (pp. 97―114). Leningrad: Nauka (in Russian).
Krivitskiy, V. A. (2016). Paradoxes of transmutation and development of the Earth, not obvious proofs. Moscow: Scientific publishing center «Akademika», 240 p. (in Russian).
Krylov, S. V. (1980). About the depths of Baikal earthquakes and self-defence factors. Geologiya i geofizika, (5), 83―97 (in Russian).
Kuskov, O. L., & Kronrod, V. A. (2007). Composition, temperature and capacity of the lithosphere of the Archean craton Kaapvaal. Fizika Zemli, (1), 45―66 (in Russian).
Kuskov, O. L., Kronrod, V. A., Prokofiev, A. A., & Pavlenkova, N. I. (2014). Petrological and geophysical models of the internal structure of the lithospheric mantle of the Siberian Craton. Petrologiya, 22(1), 21―49 (in Russian).
Larin, V. N. (1995). The hypothesis of the primordial hydridic Earth (new global concept). Moscow: Nedra, 101 p. (in Russian).
Lebedev, E. B., Kadik, A. A., Zebrin, A. M., Dorman, A. M. (1989). Experimental study of the effect of water on elastic wave velocities of the deep rocks. Doklady AN SSSR, 309(5), 1090―1093 (in Russian).
Lebedev, E. B., Pavlenkova, N. I., & Lukanin, O. A. (2017). Experimental study of the influence of water on the velocity of elastic waves in the dunite and serpentine (on the nature of the low-velocity zone in the upper mantle of the Earth). Doklady AN, 472(1), 1―4 (in Russian).
Leonov, Yu. G. (1993). Tectonic criteria for the interpretation of the seismic reflectors in the lower crust of the continents. Geotectonika, (5), 4―15 (in Russian).
Letnikov, F. A. (1999). Fluid facies of the continental lithosphere and problems of ore formation. In Smirnov’s Collection-99 (scientific-literary anthology) (pp. 63―98). Moscow (in Russian).
Letnikov, F. A. (2006). Fluid regime of endogenic processes and problems of ore genesis. Geologiya i geofizika, 47(12), 1296―1307 (in Russian).
Luts, B. G. (1983). Geochemistry of oceanic and continental magmatism. Moscow: Nedra, 142 p. (in Russian).
Luts, B. G. (1994). Magmatic geotectonics and problems of formation of continental and oceanic crust on the Earth. Regionalnaya geologiya i metallogeniya, (3), 5―14 (in Russian).
Lukin, A. E., Shestopalov, V. M. (2018). From new geological paradigm to the problems of regional geological-geophysical survey. Geofizicheskiy zhurnal, 40(4), 3―72. https://doi.org/10.24028/gzh.0203-3100.v40i4. 2018.140610 (in Russian).
Makarenko, G. F. (1997). Basalt periodicity, biocrisis, structural symmetry of the Earth. Moscow: Geoinformmark, 98 p. (in Russian).
Marakushev, A. A. (1999). Origin of the Earth and the nature of its endogenous activity. Moscow: Nedra, 253 p. (in Russian).
Milanovskiy, E. E. (1984). Problems of expansion and pulsation of the Earth. Moscow: Nauka, 192 p. (in Russian).
Nikolaev, A. V. (1972). Seismic inhomogeneous and turbid environments. Moscow: Nauka, 174 p. (in Russian).
Nikolayevskiy, V. N. (1978). Mohorovichich’s boundary as the maximum depth of the brittle-dilatancy state of rocks. Doklady AN SSSR, 249(4), 817―821 (in Russian).
Nikolayevskiy, V. N. (1981). Fracturing and plasticity of the earth’s crust. In Questions of nonlinear geophysics (pp. 54―71). Moscow: Edition of the All-Union Scientific Research Institute of Nuclear Geophysics and Geochemistry (in Russian).
Pavlenkova, N. I. (1973). Wave fields and models of the earth’s crust (continental type). Kiev: Naukova Dumka, 129 p. (in Russian).
Pavlenkova, N. I. (1989). Kola well and its importance for deep seismic sounding. Sovetskaya geologiya, (6), 17―23 (in Russian).
Pavlenkova, N. I. (1995). On the regional seismic boundary at the upper part of the mantle. Fizika Zemli, (12), 1―14 (in Russian).
Pavlenkova, N. I. (2011). Rheological properties of the upper mantle of Northern Eurasia and the nature of regional boundaries according to super-long seismic profiles. Geologiya i geofizika, 52(9), 1287―1301 (in Russian).
Pavlenkova, N. I., Kashubin, S. N., & Pavlenkova, G. A. (2016). The Earth’s Crust of the Deep Platform Basins in the Northern Eurasia and their Origin. Fizika Zemli, 52(5), 770―784 (in Russian).
Pavlenkova, N. I., & Pavlenkova, G. A. (2014). Structure of the earth’s crust and upper mantle of Northern Eurasia according to seismic profiling with nuclear explosions. Moscow: GEOKART: GEOS, 192 p. (in Russian).
Pavlenkova, N. I., Pogrebitskiy, Yu. M., & Romanyuk, T. V. (1993). Seismic-density model of the crust and upper mantle of the South Atlantic Ocean on the Angola-Brazilian geotraverse. Fizika Zemli, (10), 27―38 (in Russian).
Perchuk, L. L. (1987). Basification as magmatic substitution. In Essays on physical and chemical Petrology (pp. 39―64). Moscow: Nauka (in Russian).
Pilipenko, V. N., Verpakhovskaya, A. O., Gize, P., & Pavlenkova, N. I. (2006). Formation of the image of the medium on the wave fields of DSS profile CINCA-95 (Chile). Geofizika, (6), 16―20 (in Russian).
Pilipenko, V. N., Pavlenkova, N. I., Luosto, U., & Verpakhovskaya, A. O. (1999). Imaging environment on the seismograms of the deep sounding. Fizika Zemli, (7-8), 164―176 (in Russian).
Pogrebitskiy, Yu. E., & Trukhalev, A. I. (2002). Origin of the deep basic-ultrabasic rocks ― the key problem of the Mid-Atlantic ridge geology. In The Russian Arctic: Geological History, Minerageny, and Geoecology (pp. 49―61). St. Petersburg: Publ. of the All-Russian Research Institute of Geology and Mineral Resources of the World Ocean (in Russian).
Polyak, B. G. (1988). Heat and mass advection from the mantle in major structures of the crust. Moscow: Nauka, 192 p. (in Russian).
Pushcharovskiy, Yu. M. (1997). The main tectonic asymmetry of the Earth: the Pacific and the Atlantic segments and the relationship between them. In A. S. Perfiliev, & Yu. N. Rasnitsyn (Eds.), Tectonic and Geodynamic Phenomena (pp. 8―24). Moscow: Nauka (in Russian).
Sakulina, T. S., Roslov, Yu. V., & Pavlenkova, G. A. (2009). Methods and results of processing of complex seismic surveys along the profile 2-AR (Barents-Kara shelf). Fizika Zemli, (3), 56―63 (in Russian).
Solovieva, L. V., Vladimirov, B. M., Dneprovskaya, L. V., Maslovskaya, M. N., & Brant, C. B. (1994). The kimberlites and kimberlitic rocks; the substance of the upper mantle beneath the ancient platforms. Novosibirsk: Nauka, 256 p. (in Russian).
Galperin, E. I., & Kosminskaya, I. P. (Eds.). (1964). The structure of the earth’s crust of the transition zone from the Asian continent to the Pacific Ocean. Moscow: Nauka, 305 p. (in Russian).
Morozov, A. F., Mezhelovskiy, N. I., & Pavlenkova, N. I. (Eds.). (2006). The structure and dynamics of the lithosphere of Eastern Europe. Results of research on the EUROPROBE program. Moscow: GEOKART, GEOS, Is. 2, 736 p. (in Russian).
Salnikov, A. S. (Ed.). (2007). The tectonic structure and structure of the crust of the Magadan sector of Russia on geological and geophysical data. Novosibirsk: Nauka, 172 p. (in Russian).
Syvorotkin, V. M. (2002). Deep degassing of the Earth and global catastrophes. Moscow: Geoinformtsentr, 250 p. (in Russian).
Udintsev, G. B. (2000). Irregularity of the oceanic rifting and heterogeneity of the ocean floor. Doklady RAN, 372(5), 687―690 (in Russian).
Udintsev, G. B., Pavlenkova, N. I., & Shlezinger, A. E. (2018). New trends in global oceanic crust tectonics. Vestnik RAN, 88(1), 88―92 (in Russian).
Filonenko, V. P., & Pavlenkova, G. A. (2006). Some features of the earth’s crust dynamics in the Okhotsk region. In Geophysics of the XX1 century: 2005. Proceedings of the Seventh V. V. Fedynsky session (pp. 101―107). Moscow: Nauchnyy Mir (in Russian).
Frolova, T. I., & Burikova, I. A. (1997). Magmatic formations of modern geotectonic environments. Moscow: Publ. House of Moscow State University, 320 p. (in Russian).
Leonov, Yu. G., Kissin, I. G., Rusinov, V. L. (Eds.) (2006). Fluids and Geodynamics Geological Institute of RAS. Moscow: Nauka, 283 p. (in Russian).
Shen, E. L. (1984). Earth expansion as a result of its global structure formation. In E. E. Milanovskiy (Ed.), Problems of the Earth’s expansion and pulsation (pp. 180―185). Moscow: Nauka (in Russian).
Allen, R. B., & Tucholke, B. E. (1981). Petrology and indications of continental rocks from the Agulhas Plateau, southwest Indian Ocean. Geology, 9(10), 463—468. https://doi.org/10.1130/0091-7613(1981)9<463:PAIOCR> 2.0.CO;2.
Araki, H., Tazawa, S., Noda, H., Ishihara, Y., Goossens, S., Sasaki, S., Kawano, N., Kamiya, I., Otake, H., Oberst, J., & Shum, C. (2009). Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science, 323, 545—557. doi: 10.1126/science.1164146.
Artemieva, I. M., & Mooney, W. D. (2001). Thermal thickness and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research, 106(B8), 16 387—16 414. https://doi.org/10.1029/2000JB900439.
Asada, T., & Shimamura, H. J. (1976). Observation of earthquakes and explosions at the bottom of the Western Pacific: structure of oceanic lithosphere revealed by long shot experiment. In Geophysics of the Pacific Oceans Basin and Its Margin (pp. 135—154). Geophysical Monograph 19. American Geophysical Union.
BABEL Working Group. (1993). Deep seismic reflection/refraction interpretation of crustal structure along BABEL profile A and B in the southern Baltic Sea. Geophysical Journal International, 112(3), 325—343. https://doi.org/10.1111/j.1365-246X.1993.tb01173.x.
Begg, G., Griffin, W. L., Natapov, L. M., O’Reilly, S. Y., Grand, S. P., O’Neill, C. J., Hronsky, J. M., Poudjom Djomani Y., Swain, C. J., Deen, T., & Bowden, H. (2009). The lithospheric architecture of Africa: seismic tomo¬graphy, mantle petrology and tectonic evolution. Geosphere, 5(1), 23—50. https://doi.org/10.1130/GES00179.1.
Berry, A. J., Danyushevsky, L. V., O’Neill, H. St. C., Newville, M., & Sutton, S. R. (2008). Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature, 455, 960— 963. https://doi.org/10.1038/ nature07377.
Bijwaard, H., Sрakman, W., & Engdahl, E. R. (1998). Closing the gaр between regional and global travel time tomograрhy. Journal of Geophysical Research, 103(B12), 30055—30078. https://doi.org/10.1029/98JB02467.
Blyuman, B. (2018). Rare Earth Elements in Rocks of the Mantle and Crust of Continents and Oceans: Geodynamic Consequences. NCGT Journal, 6(3), 416—434.
Bostock, M. G. (1997). Anisotropic upper-mantle stratigraphy and architecture of the Slave craton. Nature, 390, 392—395. https://doi.org/10.1038/37102.
Boyd, F. R., Pokhilenko, N. P., Pearson, D. G., Mertz¬man, S. A., Sobolev, N. V., & Finger, L. W. (1997). Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contributions to Mineralogy and Pet¬rology, 128(2-3), 228—246. https://doi.org/10.1007/s004100050305.
Brune, J. N., & Singh, D. D. (1986). Continent-like crustal thickness beneath the Bay of Bengal sediments. Bulletin of the Seismological Society of America, 76(1), 191—203.
Charvis, P., Recg, M., Operto, S., & Brefort, D. (1995). Deep structure of the northern Kergulien Plateau and hotspot- related activity. Geophysical Journal International, 122(3), 899—924. https://doi.org/10.1111/j.1365-246X.1995.tb06845.x.
Choi, D. R., & Pavlenkova, N. I. (2009). Geology and tectonic development of the Pacific ocean. Part 5. Outer low gravity belt of the Great Pacific Ring structure. NCGT Newsletter, (50), 46—54.
Clowes, R. M., Hammer, P., Fernбndez-Viejo, G., & Welford, J. K. (2005). Lithospheric structure in northwestern Canada from Lithoprobe seismic refraction and related studies: a synthesis. Canadian Journal of Earth Science, 42(6), 1277—1293. https://doi.org/10.1139/e04-069.
Dick, H. J., Natland, J. H., Alt, J. C., Bach, W., Bideau, D., Gee, J. S., … Yoshinobu, A. (2000). A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters, 179(1), 31—51. https://doi.org/10.1016/S0012-821X(00)00102-3.
Doncet, L. S., Peslier, A. H., Ionov, D. A., Brandon, A. D., Golovin, A. V., Goncharov, A. G., & Ashchepkov, I. V. (2014). High water contents in the Siberian cratonic mantle linked to metasomatism an FTIR study of Udachnaya peridotite xenoloths. Geochimica at Cosmochimica Acta, 137, 159—187. https://doi.org/10.1016/j.gca.2014. 04.011.
Downes, H. (1997). Shallow continental lithospheric mantle heterogeneity — petrological constraints. In K. Fuchs (Ed.), Upper Mantle Heterogeneities from Active and Passive Seismology (pp. 295—308). Dordrecht: Kluwer Academic Publishers.
Downes, H. (1993). The nature of the lower continental crust of Europe: petrological and geochemical evidence from xenoliths. Physics of the earth and planetary interiors, 79(1-2), 195—218. https://doi.org/10.1016/0031-9201(93)90148-3.
Elton, D. (1987). Petrology of gabbroic rock from Mid-Cayman Rise Spreading Center. Journal of Geophysical Research, 92(B1), 658—682. https://doi.org/10.1029/JB092iB01p00658.
Fernбndez Viejo, G., & Clowes, R. M. (2003). Lithospheric structure beneath the Archaean Slave Province and Proterozoic Wopmay orogen, Northwestern Canada, from a LITHOPROBE refraction/wide angle reflection survey. Geophysical Research Letters, 153(1), 1—19. https://doi.org/10.1046/j.1365-246X.2003.01807.x.
Funck, T., Jackson, H. R., & Shimeld, J. (2011). The crustal structure of the Alpha Ridge at the transition to the Canadian Polar Margin, results from a seismic refraction experiment. Journal of Geophysical Research, 116, B12101. doi.10.1029/2011JB008411.
Gaina, C., Werner, S., Saltus, R., Maus, S. and the CAMP-GM group. (2011). Circum-Arctic Mapping Project: New Magnetic and Gravity Anomaly Maps of the Arctic. Geol. Soc., London. Memoirs, 35, 39―48. doi: 10.1144/M35.3.
Gaggero, L., & Cortesogno, L. (1997). Methamorphic evolution of oceanic gabbro: recrystallisation from subsolidus to hydrothermal condition in the MARK area (ODP LEG 153). Lithos, 40(2-4), 105—131. https://doi.org/10.1016/ S0024-4937(97)00006-6.
Gilat, A., & Vol, A. (2005). Primordial hydrogen-helium degassing, an overlooked major energy source for internal terrestrial processes. HAIT Journal of Science and Engineering B, 2(1-2), 125—167.
Gohl, K., & Uenzelmann-Neben, G. (2001). The crustal role of the Agulhas Plateau, south Indian Ocean: evidence from seismic profiling. Geophysical Journal International, 144(3), 632—646. https://doi.org/10.1046/j.1365-246x.2001. 01368.x.
Gossler, J., & Kind, R. (1996). Seismic evidence for very deep roots of continents. Earth and Planetary Science Letter, 138(1-4), 1—13. https://doi.org/10.1016/0012-821X(95)00215-X.
Grad, M., & Luosto, U. (1987). Seismic models of the crust of the Baltic shield along the SVEKA profile in Finland. Annales geophysicae. Series B, 639—649.
Griffin, W. L., & O’Reilly, S. Y. (2007). Cratonic lithospheric mantle: is anything subducted? Episodes, 30(1), 43—53.
Griffin, W. L., O’Reilly, S. Y., Afonso, J. C., & Begg, G. C. (2008). The composition and evolution of lithospheric mantle, a re-evaluation and its tectonic implication. Journal of Petrology, 50(7), 1185—1204. https://doi.org/ 10.1093/petrology/egn033.
Haak, V., & Hutten, V. R. S. (1986). Electrical resistivity in continental lower crust. In J. B. Dawnson, D. A. Carswell, J. Hall, & K. H. Wedepohl (Eds.), The nature of the Lower Continental Crust (pp. 35—49). Geol. Soc., London, Spec. Publ., 24.
Hales, A. L. (1969). A seismic discontinuity in the lithosphere. Earth and Planetary Science Letters, 7(1), 44—46. https://doi.org/10.1016/0012-821X(69)90009-0.
Hilgenberg, O. C. (1966). Earth expansion, deep-sea trenches and the inclination of the shelf-sea floors. News Jahrbuch fur Geologie und Palaeontologie, Monatshefte, 3,138—14.
Hoshino, M. (2014). The history of micro-expanding Earth. History of the Earth from viewpoint of Sea Level Rise. E. G. Service Press, Sapporo, Japan. 234 p.
Ionov, D. A., Doucet, L. S., Ashchepkov, I. V. (2010). Composition of the lithospheric mantle in the Siberian Craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. Journal of Petrology, 51(11), 2177—2210. https://doi.org/10.1093/petrology/egq053.
Ishikawa, A., Pearson, D. G., & Dale, Ch. W. (2011). Ancient Os isotope signatures from Ontong Java Plateau lithosphere: Tracing lithosphere accretions history. Earth and Planetary Science Letters, 301(1-2), 159—170. https://doi.org/10.1016/j.epsl.2010.10.034.
James, D. E., Boyd, F. R., Schutt, D., Bell, D. R., & Carlson, R. W. (2004). Xenolith constraints on seismic velocities in the upper mantle beneath southern Africa. Geochemistry Geophysics Geosystems, 5(1). doi: 10.1029/2003GC000551.
James, K. (2011). Continent below the oceans: how much and how far? The future for deepwater exploration (and geopolitics). Oil and Gas Journal, 109(10), 22—29.
James, N., & Singh, D. D. (1986). Continent-like crustal thickness beneath the Bay of Bengal sediments. Bulletin of Seismological Society of America, 76(1), 191—203.
Jones, A. G. (1992). Electrical conductivity of the continental lower crust. In D. M. Fountain, R. Arculus, & R. W. Kay (Eds.), Continental lower crust. Development in Geotectonics (pp. 81—143). Elsevier.
Jordan, T. H. (1979). The deep structure of the continents. Scientific American, 240, 70—82.
Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429—465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x.
Kern, H. M. (1993). Physical properties of crustal and upper mantle rocks with regards to lithosphere dynamics and high pressure mineralogy. Physics of the Earth and Planetary Interiors, 79(1-2), 113—136. https://doi.org/10.1016/0031-9201(93)90145-Y.
Korhonen, J. V., Fairhead, J. D., Hamoudi, M., Hemant, K., Lesur, V., Mandea, M., Maus, S., Purucker, M., Ravat, D., Sazonova, T., & Thйbault, E. (2007). Magnetic Anomaly Map of the World. 1: 50 000 000. Printed by the Geological Survey of Finland.
Korja, A., Korja, T., Luosto, U., & Heikkinen, P. (1993). Seismic and geoelectric evidence for collisional and extensional events in the Fennoscandian Shield — implication for Precambrian crustal evolution. Tectonophysics, 219, 129—152.
Kuskov, O. L., Kronrod, V. A., Prokofyev, A. A., & Pavlenkova, N. I. (2014). Thermo-chemical structure of the lithospheric mantle underneath the Siberian craton inferred from long-range seismic profiles. Tectonophysics, 615-616, 154—166. https://doi.org/10.1016/j.tecto.2014.01.006.
Lambert, I. B., & Wyllie, P. J. (1970). Low-velocity zone of the Earth’s mantle: incipient melting caused by water. Science, 169, 764—766. doi: 10.1126/science.169.3947.764.
Lehmann, I. (1959). Velocities of longitudinal waves in the upper part of the Earth’s mantle. Annals of Geophysics, 15, 93—118.
Leven, J. H., Jackson, I., & Ringwood, A. E. (1981). Upper mantle seismic anisotropy and lithosphere decoupling. Nature, 289, 234—239.
Chen, L. (2010). Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 120(1-2), 96—115. https://doi.org/10.1016/j.lithos.2009.12.007.
Liu, Ch.-Z., Snow, J. E., Hellebrand, E., Brьgmann, G., von der Handt, A., Bьchl, A., & Hofmann, A. (2008). Ancient highly hetrogenous mantle beneath Gakkel ridge. Arctic ocean. Nature, 452, 311—316.
Luosto, U., Flueh, E. R., Lund, C.-E. & Working Group. (1989). The crustal structure along the Polar Profile from seismic refraction investigation. Tectonophysics, 162(1-2), 51—85. https://doi.org/10.1016/0040-1951(89)90356-9.
Menzies, M., & Chazot, G. (1995). Fluid processes in diamond to spinel facies shallow mantle. Journal of Geodynamics, 20(4), 387—415. https://doi.org/10.1016/0264-3707(95)00018-5.
Mooney, W. D. (2007). Crust and Lithospheric Structure — Global Crustal Structure. In B. Romanowicz & A. Dziewonski (Eds.), Treatise on Geophysics (Vol. 1, pp. 361—417). Elsevier.
Operto, S., & Charvis, P. (1996). Deep structure of the southern Kerguelen Plateau (southern Indian Ocean) from ocean-bottom seismometer wide-angle seismic data. Journal of Geophysical Research, 101, 25077—25103. https://doi.org/10.1029/96JB01758.
O’Reilly, S. Y., & Griffin, W. L. (2006). Imaging global chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: Geophysical implications. Tectonophys, 416(1-4), 289—309. https://doi.org/10.1016/j.tecto.2005.11.014.
O’Reilly, S. Y, Zhang, M., Griffin, W. L., Begg, G., & Hronsky, J. (2009). Ultradeep continental roots and their oceanic remnants: a solution to the geochemical «mantle reservoir» problem? Lithos, 112, 1043—1054. https://doi.org/10.1016/j.lithos.2009.04.028.
Pavlenkova, N. I. (2012). Crust and mantle structural evidences of the Earth expansion. In G. Scalera (Ed.), The Earth expansion evidence. Challenge for geology, geophysics and astronomy (pp. 91—100). Instituto Nazionale di Geofisica e Vulcanologia, Rome.
Pavlenkova, N. I. (1996). Crust and upper mantle structure in Northern Eurasia from seismic data. In R. Dmowska, & B. Saltzman (Eds.), Advances in Geophysics (Vol. 37, pp. 1—132). Academic Press Inc.
Pavlenkova, N. I. (2015). Degassing and expanding Earth: new model of global tectonics. NCGT Journal, 3(4), 489—515.
Pavlenkova, N. I. (2017). Deep structure of continents and oceans and their origin. NCGT Journal, 5(4), 486—499.
Pavlenkova, N. I., & Zverev, S. M. (1981). Seismic model of Iceland’s Crust. Geologische Rundschau, 70(1), 271—281. https://doi.org/10.1007/BF01764327.
Pollack, H. N., Hurter, S. J., & Johnson, J. R. (1993). Heat flow from the Earth’s interior: analysis of the global data set. Reviews of Geophysics, 31(3), 267—280. https://doi.org/10.1029/93RG01249.
Porcelli, D., & Turekian, K. K. (2003). The history of planetary degassing as recorded by noble gases. In R. F. Keeling (Ed.), Treatise on Geochemistry (Vol. 4, pp. 281—318). Elsevier.
Pratt, D. (2013a). Palaeomagnetism, plate motion and polar wander. NCGT Journal, 1(1), 66—152.
Pratt, D. (2013b). Paleomagnetism, polar wander and global tectonics: some controversies. NCGT Journal, 1(3), 103 —117.
Richardson, K. R., Smallwood, J. R., White, R. S., Snyder, D. B. & Maguire, P. K. H. (1998). Crustal structure beneath the Faeroe Islands and the Faeroe-Iceland Ridge. Tectonophysics, 300(1-4), 159—180. https://doi.org/10.1016/ S0040-1951(98)00239-X.
Schimschal, C. V., & Jokat, W. (2018). The crustal structure of the continental margins in east of the Falklands Islands. Tectonophysics, 724, 234—253. doi: 10.1016/j.tecto.2017.11.034.
Shanon, R. M., Jacob, A. W. B., Makris, J., O’Reilly, B., Hauser, F. & Vogt, U. (1994). Basin evolution in the Rockoll region, North Atlantic. First break, 12(10), 515—522. doi: 10.3997/1365-2397.1994031.
Starostenko, V., Janik, T., Yegorova, T., Czuba, W., Środa, P., Lysynchuk, D., Aizberg, R., Garetsky, R., Karataev, G., Gribik, Y., Farfuliak, L., Kolomiyets, K., Omelchenko, V., Komminaho, K., Tiira, T., Gryn, D., Guterch, A., Legostaeva, O., Thybo, H., & Tolkunov, A. (2018). Lithospheric structure along wide-angle seismic profile GEORIFT 2013 in Pripyat-Dnieper-Donets Basin (Belarus and Ukraine). Geophysical Journal International, 212(3), 1932―1962. https://doi.org/10.1093/gji/ggx509.
Storetvedt, K. (1997). Our evolving planet: Earth history in new perspective. Bergen, Norway: Alma Mater, 456 p.
Suckro, S. K., Gohl, K., Funck, Th., Heyde, I., Ehrhardt, A., Schreckenberger, B., Gerlings, J., Damm, V. & Jokat, W. (2012). The crustal structure of southern Baffin Bay: implications from a seismic refraction experiment. Geophysical Journal International, 190(1), 37―58. doi: 10.1111/j.1365-246X.2012.05477.x.
Thybo, H., & Рerchuc, E. (1997). The seismic 8 discontinuity and partial melting in continental mantle. Science, 275, 1626—1629.
Tsunoda, F. (2007). Origin of the Central Honshu Arc and the Izu Ridge, Japan. NCGT Journal, 4(2), 174—193.
Vinnik, L. P., Green, R. W. E., Nicolausen, L. O., Kosarev, G. L., & Petersen, N. V. (1996). Deep structure of the Kaapvaal Craton. Tectonophysics, 262, 67—75.
Vinnik, L., Oreshin, S., Kosarev, G., & Makeyeva, L. (2009). Mantle anomalies beneath southern Africa: evidence from seismic S and P receiver functions. Geophysical Journal International, 179(1), 279—298.
Walter, M. J. (1998). Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. Journal of Petrology, 39, 29—60.
Wang, Yi., Wen, L., & Weidner, L. (2008). Upper mantle SH and P-velocity structures and compositional models beneath southern Africa. Earth and Planetary Science Letters, 267, 596—608.
Williams, Q., & Hemley, R. J. (2001). Hydrogen in the deep Earth. Annual Review of Earth and Planetary Sciences, 29, 365—418.
Yano, T. (2014). Tectonic development of the Pacific Ocean and its periphery: a constraint on large-scale rotations of lithospheric blocks. NCGT Journal, 2(2), 54—68.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).