Gravity field of Sarmatia according to satellite data (model EIGEN-6S2) and its interpretation

Authors

  • O. A. Chornaya Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • T. P. Yegorova Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gzh.v43i3.236380

Keywords:

satellite gravimetry, Earth’s gravity field model, model EIGEN-6S2, geoid, Sarmatia

Abstract

The paper presents a brief overview of satellite observations of the CHAMP, GRACE and GOCE missions to study the Earth’s global gravity field, and the used mathematical apparatus in the form of an expansion of the geopotential in spherical harmonics. The application of satellite data in various fields of Earth Sciences is considered. As a basic global model of the Earth’s gravity field based on satellite data we used the EIGEN-6S2 model [Rudenko et al, 2014] that combines satellite mission data GRACE and GOCE, and also uses satellite data of LAGEOUS laser ranging.  On its basis, the gravity field of Sarmatia was analyzed using the Free Air anomalies, Bouguer anomalies, the second radial derivative of the geopotential and the geoid heights. The geological units of Sarmatia and its surroundings are most clearly manifested in the Free Air anomalies and in the distribution of the second derivative of the geopotential, showing differences in the gravity field pattern of the Ukrainian Shield, the Voronezh Massif, and the Pripyat-Dnieper-Donets basin (PDDB) with characteristic anomalies of the general northwest strike. The continuation of the PDDB in a southeastern direction through the Karpinsky Swell to the northern part of the Caspian Sea confirms the existence of an extended ancient tectonic zone of the Sarmato-Turanian lineament. The geoid within Sarmatia shows in general a regional west-east gradient change from +40 m in the west to -10 m in the east. Such large-scale geoid changes are determined by the Sarmatia position between two global geoid anomalies — the maximum of the North Atlantic and the minimum of the Indian Ocean.

References

Ayzberg, R. E., Garetskiy, R. G., Sinichka, A. M. (1971). Sarmato-Turanian lineament of the earth’s crust. In Problems of theoretical and regional tectonics (pp. 41—51). Moscow: Nauka (in Russian).

Kashcheev, R. A. (2015). Modern methods of satellite gravimetry. Lecture notes. Kazan: Edition of Kazan State University, 45 p. (in Russian)

Kiselev, A. V., Gornyy, V. I., Kritsuk, S. G., & Tronin, A. A. (2016). Indication of natural hazards using terrestrial gravity field variations observed by grace system. Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 13(6), 13—28. doi: 10.21046 / 2070-7401-2016-13-6-13-28 (in Russian).

Molodenskiy, M. S., Eremeev, V. F., & Yurkina, M. I. (1960). Methods for studying the external gravitational field and the figure of the Earth. Proceedings of TsNIIGAiK, (131), 252 p. (in Russian).

Nepoklonov, V. B. (2009). On the use of new models of the Earth’s gravitational field in automated survey and design technologies (part 1, 2). Avtomatizirovannyye tekhnologii izyskaniy i proyektirovaniya, (2-3). Retrieved from http://www.credo-dialogue.com/journal.aspx (in Russian).

Pavlenkova, N. I. (2003). The structure of the earth’s crust and upper mantle and the mechanism of movement of deep-seated matter. In D. V. Runkquist (Ed.), Problems of global geodynamics (pp. 168—182). Moscow: RAS Publishing House (in Russian).

Website of GFZ German Research Centre for Geosciences (Potsdam). Retrieved from

https://www.gfz-potsdam.de/grace/; https://www.gfz-potsdam.de/ICGEM/.

Website of European Space Agency, ESA «Earth online». Retrieved from https://earth.esa.int/eogateway/missions/goce.

Sugaipova, L. S. (2018). Development and research of methods for multi-scale modeling of the geopotential. Doctor’s thesis. Moscow, 325 p. (in Russian).

Sugaipova, L. S. (2011). Comparison of modern models of the Earth’s global gravitational field. Izvestiya vuzov. Geodeziya i aerofotosyemka, (6), 14—20 (in Russian).

Bogdanova, S. V. (1993). Segments of the East European Craton. In D. G. Gee, M. Beckholmen (Eds.), EUROPROBE in Jablonna 1991 (pp. 33—38). Warshawa: Institute of Geophysics. Polish Acad. of Sci. European Sciences Foundation.

Bott, M.H.P. (1971). The mantle transition zone as a possible source of global gravity anoma¬li¬es. Earth and Planetary Science Letters, 11(1-5), 28—34. https://doi.org/10.1016/0012-821X(71) 90137-3.

Braitenberg, C. A. (2014). A Grip on Geological Units with GOCE. In: U. Marti (Ed.), Gravity, Geoid and Height Systems. International Association of Geodesy Symposia (Vol. 141, pp. 309—317). Springer, Cham. https://doi.org/10.1007/978-3-319-10837-7_39.

Braitenberg, C. A. (2015). Exploration of tectonic structures with GOCE in Africa and across-continents. International Journal of Applied Earth Observation and Geoinformation, 35, 88—95. https://doi.org/10.1016/j.jag.2014.01.013.

Brockmann, J. M. (2014). On High Performance Computing in Geodesy — Applications in Global Gravity Field Determination. Phd thesis, Institute of Geodesy and Geoinformation, University of Bonn. No. 22.

Brockmann, J. M., Zehentner, N., Hock, E., Pail, R., Loth, I., Mayer-Gurr, T., & Schuh, W. D. (2014). EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission. Geophysical Research Letters, 41(22), 8089—8099. https://doi.org/10.1002/ 2014gl061904.

Brockmann, J. M., Schubert, T., & Schuh, W. D. (2021). An Improved Model of the Earth’s Static Gravity Field Solely Derived from Reprocessed GOCE Data. Surveys in Geophysics, 42, 277—316. https://doi.org/10.1007/s10712-020-09626-0.

Bruinsma, S. L., Forste, C., Abrikosov, O., Marty, J. C., Rio, M. H., Mulet, S., & Bonvalot, S. (2013). The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters, 40(14), 3607—3612. https://doi.org/10.1002/grl.50716.

Cesare, S., Allasio, A., Anselmi, A., Dionisio, S., Massotti, L., Mottini, S., Parish, M., Silvestrin, P. (2014). From GOCE to the Next Generation Gravity Mission. 5th International GOCE User Workshop. UNESCO. November 2014, Paris, France. Retrieved from https://www.researchgate.net/publication/280075591_From_GOCE_to_the_Next_Generation_Gravity_Mission.

Chase, C. G. (1979). Subduction, the geoid, and lower mantle convection, Nature, 282, 464—468. https://doi.org/10.1038/282464a0.

Chen, J. L., Tapley, B. D., & Wilson, C. R. (2006). Alaskan mountain glacial melting observed by satellite gravimetry. Earth and Planetary Science Letters, 248(1-2), 368—378. http://dx.doi.org/10.1016/j.epsl.2006.05.039.

Drinkwater, M. R., Haagmans, R., Muzi, D., Popescu, A., Floberghagen, R., Kern, M. & Fehringer, M. (2007). The GOCE gravity mission: ESA’s first core Earth explorer. Proc. of the 3rd international GOCE user workshop, November 6—8, 2006. Frascati, Italy, ESA SP-627.

Ebbing, J., Haas, P., Ferraccioli, F., Pappa, F., Szwillus, W., & Bouman, J. (2018). Earth tectonics as seen by GOCE — Enhanced satellite gravity gradient imaging. Scientific Reports, 8, 16356. doi: 10.1038/s41598-018-34733-9.

England, P., Kennet, B., & Worthington, M. (1978). A comparison of the upper mantle structure beneath Eurasia and the North Atlantic and Arctic Oceans. Geophysical Journal International, 54(3), 575—585. https://doi.org/10.1111/j.1365-246X.1978.tb05495.x.

Flechtner, F., Dahle, C., Neumayer, K. H., König, R., & Förste, C. (2010) The Release 04 CHAMP and GRACE EIGEN Gravity Field Models. In: F. Flechtner et al. (Eds.), System Earth via Geodetic-Geophysical Space Techniques (pp. 41—58). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-10228-8_4.

Flechtner, F. (2014). LOTSE-CHAMP/GRACE: An Interdisciplinary Research Project for Earth Observation from Space. In: F. Flechtner, N. Sne¬euw, W. D. Schuh (Eds.), Observation of the System Earth from Space — CHAMP, GRACE, GOCE and future missions. Advanced Technologies in Earth Sciences (pp. 3—8). Ber¬lin, Heidelberg: Springer. https://doi.org/10. 1007/978-3-642-32135-1_1.

Flechtner, F., Neumayer, K.-H., Dahle, C., Dobslaw, H., Fagiolini, E., Raimondo, J.-C., & Güntner, A. (2016). What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? Surveys in Geophysics, 37, 453—470. https://doi.org/10.1007/s10712-015-9338-y.

Ghosh, A., Thyagarajulu, G., & Steinberger, B. (2017). The importance of upper mantle heterogeneity in generating the Indian Oce¬an Geoid Low. Geophysical Research Let¬ters, 44(19), 9707—9715, https://doi.org/10.1002/ 2017GL075392.

Hofmann-Wellenhof, B., Moritz, H. (2006). Physical Geodesy. Springer, 420 р.

Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., & Schuh, H. (2019). ICGEM — 15 years of successful collection and distribution of global gravitational models, associated services and future plans. Earth System Science Data, 11, 647—674. http://doi.org/10.5194/essd-11-647-2019.

Jacob, T., Wahr, J., Pfeffer, W. T., & Swenson, S. (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482, 514—518. https://doi.org/10.1038/nature10847.

Khan, H. H., Khan, A., Shakeel, A., Gennero, M.-C., Minh, K. D., & Cazenave, A. (2013). Terrestrial water dynamics in the lower Ganges — estimates from ENVISAT and GRACE. Arabian Journal of Geosciences, 6(10), 3693—3702. https://doi.org/10.1007/s12517-012-0629-z.

Mariani, P., Braitenberg, C. & Ussami, N. (2013). Explaining the thick crust in Paraná basin, Brazil, with satellite GOCE-gravity observati¬ons. Journal of South American Earth Scien¬ces, 45, 209—223. https://doi.org/10.1016/j.jsames. 2013.03.008.

Mayer-Gürr, T., Behzadpur, S., Ellmer, M., Kvas, A., Klinger, B., Strasser, S., & Zehentner, N. (2018). ITSG-Grace2018: Monthly, Daily and Static Gra¬vity Field Solutions from GRACE. GFZ Data Services. https://doi.org/10.5880/ICGEM. 2018.003.

Migliaccio, F., Reguzzoni, M., Sanso, F., Tscherning, C. C., Veicherts, M. (2010). GOCE data ana¬lysis: the space-wise approach and the first space-wise gravity field model. ESA Publicati¬ons Division, Norwijk, The Nethelands, Bergen, Norway.

Migliaccio, F., Reguzzoni, M., Gatti, A., Sansò, F., & Herceg, M. (2011). A GOCE-only global gravity field model by the space-wise approach. Poster session presented at European Geosciences Union General Assembly 2011, Vienna, Austria.

Moholdt, G., Wouters, B., & Gardner, A. S. (2012). Recent mass changes of glaciers in the Russian High Arctic. Geophysical Rese¬arch Letters, 39(10), L10502. https://doi.org/10.1029/ 2012GL051466.

Murbock, M., Gruber, Th., Baldesarra, M., Brieden, P., Daras, I., Danzmann, K., Doll, B., Feili, D., Flechtner, F., Flury, J., Heinzel, G., Iran-Pour, S., Kusche, J., Langemann, M., Löcher, A., Müller, J., Müller, V., Naeimi, M., Pail, R., Raimondo, J.-C., Reiche, J., Reubelt, T., Sheard, B., Sneeuw, N., & Wang, X. (2014). Next Generation Satellite Gravimetry Mission Study. 5th International GOCE User Workshop. UNESCO. November 2014, Paris, France.

Pail, R., Goiginger, H., Mayrhofer, R., Schuh, W., Brockmann, J. M., Krasbutter, I., Hoeck, E., & Fecher, T. (2010a). GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. ESA Publications Division, Norwijk, The Nethelands, Bergen, Norway.

Pail, R., Goiginger, H., Schuh, W. D., Höck, E., Brockmann, J. M., Fecher, T., Gruber, T., Mayer-Gürr, T., Kusche, J., Jäggi, A., & Rieser, D. (2010b). Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophysical Research Letters, 37(20), L20314, https://doi.org/10.1029/2010gl044906.

Panet, I., Pollitz, F., Mikhailov, V., Diament, M., Ba¬nerjee, P., & Grijalva, K. (2010). Upper mant¬le rheology from GRACE and GPS post seis¬mic deformation after the 2004 Sumatra-An¬daman earthquake. Geochemistry, Geophysics, Geosystems, 11(6), Q06008. https://doi.org/10.1029/ 2009GC002905.

Pearlman, M., Degnan, J., & Bosworth, J. (2002). The International Laser Ranging Service. Advances in Space Research, 30(2), 135—143. https://doi.org/10.1016/S0273-1177(02)00277-6.

Rao, B. P., & Kumar, M. R. (2014). Seismic eviden¬ce for slab graveyards atop the core mantle boun¬dary beneath the Indian Ocean Geoid Low. Physics of the Earth and Planetary Interi¬ors, 236, 52—59, https://doi.org/10.1016/j.pepi. 2014.08.005.

Reguzzoni, M., Sampietro, D., & Sansò, F. (2013). Global Moho from the combination of the CRUST2. 0 model and GOCE data. Geophysical Journal International, 195(1), 222—237. https://doi.org/10.1093/gji/ggt247.

Reguzzoni, M., & Sampietro, D. (2015). GEMMA: An Earth crustal model based on GOCE satellite data. Journal of Applied Earth Observation and Geoinformation, 35, 31—43. https://doi.org/10.1016/j.jag.2014.04.002.

Reigber, C., Balmino, G., Schwintzer, P., Bianca¬le, R., Bode, A., Lemoine, J.-M., König, R., Loy¬er, S., Neumayer, H., Marty, J.-C., Barthel¬mes, F., Perosanz, F., & Zhu Yuan, S. (2002). A high-quality global gravity field model from CHAMP GPS tracking data and acce¬le¬rometry (EIGEN-1S); Geophysical Research Letters, 29(14), 37-1—37-4. https://doi.org/10.1029/ 2002gl015064.

Rudenko, S., Dettmering, D., Esselborn, S., Schö­ne, T., Förste, C., Lemoine, J.-M., Ablain, M., Alexandre, D., & Neumayer, K.-H. (2014). Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Advances in Space Research, 54(1), 92—118. https://doi.org/10.1016/j.asr.2014.03.010.

Saari, T., & Bilker-Koivula, M. (2015). Evaluation of GOCE-based Global Geoid Models in Finnish Territory. Newton’s Bulletin, (5), 25—36.

Sabadini, R., & Cambiotti, G. (2013). The 2011 Tohoku-Oki earthquake GCMT solution from the GOCE model of the Earth’s crust. Bollettino di Geofisica Teorica ed Applicata, 54(3), 335—346. https://doi.org/10.4430/bgta0110.

Sampietro, D., Reguzzoni, M., & Negretti, M. (2013). The GEMMA crustal model: firstvalidation and data distribution. Proceedings of the ESA Living Planet sym-posium, Edinburgh, United Kingdom, 2014b (ESA SP-722, December 2013).

Sampietro, D., Reguzzoni, M., & Braitenberg, C. (2014). The GOCE estimated Mohobeneath the Tibetan Plateau and Himalaya. In C. Rizos, P. Willis (Eds.), Earth on the Edge: Science for a Sustainable Planet (Vol. 139, pp. 391—397). International Association Geodesy Symposia. Springer.

Seeber, G. (2003). Satellite Geodesy. Berlin, New York: Walter de Gruyter, 612 р.

Steffen, H., Gitlein, O., Denker, H., Müller, J., & Timmen, L. (2009). Present rate of uplift in Fennoscandia from GRACE and absolute gravimetry. Tectonophysics, 474, 69—77. https://doi.org/10.1016/j.tecto.2009.01.012.

Tapley, B. D., Chambers, D. P., Bettadpur, S., & Ries, J. C. (2003). Large scale ocean circulation from the GRACE GGM01 Geoid. Geophysical Research Letters, 30(22), 2163. https://doi.org/10.1029/2003gl018622.

Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9), L09607. https://doi.org/10.1029/2004gl019920.

Torge, W. (1989). Gravimetry. Berlin, New York: Walter de Gruyter, 465 p.

Velicogna, I., Sutterley, T. C., & van den Broeke, M. R. (2014). Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters, 41(22), 8130—8137. https://doi.org/10.1002/2014GL061052.

Yong-zhi, Z., Hai-jun, X., Wei-Dong, W., Hu-rong, D. & Ben-ping, Z. (2011). Gravity anomaly from satellite gravity gradiometry data by GOCE in Japan Ms9.0 strong earthquake re¬gi¬on. Procedia Environmental Sciences, 10, 529—534. https://doi.org/10.1016/j.proenv. 2011.09.086.

Published

2021-10-05

How to Cite

Chornaya, O. A. ., & Yegorova, T. P. . (2021). Gravity field of Sarmatia according to satellite data (model EIGEN-6S2) and its interpretation. Geofizicheskiy Zhurnal, 43(3), 47–63. https://doi.org/10.24028/gzh.v43i3.236380

Issue

Section

Articles