The effect of the mantle and core matter phase state on the course of geodynamic processes

Authors

  • O.V. Usenko S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gj.v45i4.286287

Keywords:

mantle, Earth's core, phase state, fluidfluid, plume

Abstract

The study of the course of geodynamic processes in the lower crust and upper mantle proves that an additional energy contribution is made by a change in the phase state of matter with increasing pressure and temperature. The gas phase, composed of hydrogen, oxygen and carbon, turns into a fluid that combines the properties of a liquid and a gas. The result is a change in the behavior of fluid-crystal and fluid-melt systems which significantly accelerates melting and physicochemical interactions in the thermal asthenosphere. These conclusions are confirmed by numerous experimental studies and the results of the study of xenoliths representing the crust and mantle of cratons and active regions.

Seismic tomography studies show distinct patterns of inhomogeneities in physical pro­per­ties, reflecting inhomogeneities in the mantle structure. Many works hypothesize, with substantiation, that plumes or fluid flows arise at the boundary of the core and mantle and are factors of all geodynamic processes. Modern ideas about the composition of the Earth's core are based on the statement that it is composed of molten iron with minor impurities of other elements. However, calculations of the energy balance and physical modeling of the redistribution of matter in the core itself show that the removal of volatile components or convective currents do not provide enough energy for the formation of plumes.

The assumption that the substance of the core is an electrically conductive ionic liquid in which chemical compounds have completely dissociatedand the electronic structure has no gapradically changes the idea of the energetics of the core and the possibility of initiating plume processes. The properties of a substance in a similar phase state are fundamentally different from the properties of a liquid.

References

Burakhovich, T.K., Kushnir, A.M. & Ilyenko, V.A. (2022). Modern geoelectromagnetic resear¬ches

of the Ukrainian Carpathians. Geofizicheskiy Zhurnal, 44(3), 21—43. https://doi.org/10. 24028/gj.v44i3.261966 (in Ukrainian).

Iosylevskiy, I.L., Krasnikov, Y.G., Son, E.E., & Fortov, V.E. (2000). Thermodynamics and transport in non-ideal plasma. Moscow Publ. House of the Moscow Institute of Physics and Technology, 476 p. (in Russian).

Kirzhnits, D.A. (1971). Extreme states of matter (ultra-high pressures and temperatures). Uspekhi fizicheskikh nauk, 104(3), 489—509 (in Russian).

Likalter, A.A. (1992). Gaseous metals. Uspekhi fizicheskikh nauk, 162(7), 119—147 (in Russian).

Likalter, A.A. (2000). Critical points of condensation in Coulomb systems. Uspekhi fizicheskikh nauk, 170(8), 832—854 (in Russian).

Litasov, K.D. (2011). Physico-chemical conditions of melting of the Earth’s mantle in the presence of volatile components (according to experimental data). Extended abstract of Doctor’s thesis. Novosibirsk, 35 p. (in Russian).

Litasov, K.D., & Shatskiy, A.F. (2016). Composition and structure of the Earth’s core. Novosibirsk: Publ. House of the Siberian Branch of the Russian Academy of Sciences, 304 p.

Lukin, A.E. (2013). Mineral Spheres — indicators of a specific fluid regime of ore formation and naftidogenesis. Geofizicheskiy Zhurnal, 35(6), 10—53. https://doi.org/10.24028/gzh.0203-3100.v35i6.2013.116450 (in Russian).

Purtov, V.K., Anfilogov, V.N., & Egorova, L.G. (2002). Interaction of basalt with chloride solutions and the mechanism of formation of acidic melts. Geochemistry, (10), 1084—1097 (in Russian).

Ryabchikov, I.D., Orlova, G.P., Kovalenko, V.Y., Choporov, D.Ya., Solovova, I.P., & Muravitskaya, G.N. (1983). Experimental study of fluid interaction with micaceous spinel lherzolite at high temperatures and pressures. Doklady AN SSSR. Ser. geol., (3), 38—46 (in Russian).

Usenko, O.V. (2022). Evolution of the Mantle Fluids Composition in the Precambrian (on the example of the Ukrainian shield ferruginous formation). Geofizicheskiy Zhurnal, 44(2), 3—28. https://doi.org/10.24028/gj.v44i2.256263.

Usenko, O.V. (2014). Formation of melts: geodynamic process and physical-chemical interactions. Kiev: Naukova Dumka, 240 p. (in Russian).

Fortov, V.E. (2012). Equations of state of matter: from an ideal gas to a quark-gluon plasma. Moscow: Fizmatlyt, 492 p. (in Russian).

Funtikov, A.I. (2003). Phase diagram and iron melting curve obtained from statistical and shock wave data. Teplofizika vysokikh temperatur, 41(6), 954—969 (in Russian).

Tsvetkova, T.O., Bugaenko, I.V., & Zaets, L.M. (2022). Seismic tomography of the mantle and primary hydrogen deposits in the Dnieper-Donetsk basin. Geofizicheskiy Zhurnal, 44(3), 44—55. https://doi.org/10.24028/gj.v44i3.261967 (in Ukrainian).

Shestopalov, V.M., Lukin, A.E., Zgonnik, V.A., Makarenko, A.N., Larin, N.V., & Boguslavskiy, A.S. (2018). Essays on the degassing ofthe Earth. Kiev: Itekservis, 632 p. (in Russian).

Banjara, D., Ghosh, D.В., & Karki, В.В. (2023). First-principles simulations of liquid iron-heavy ele¬ment alloys at high pressure. Physics of the Earth and Planetary Interiors, 337, 107008. https://doi.org/10.1016/j.pepi.2023.107008.

Berryman, J.G. (2000). Seismic velocity decrement ratios for regions of partial melt in the lower mantle. Geophysical Research Letters, 27(3), 421—424. https://doi.org/10.1029/1999GL008402.

Bi, Y., Tan, H., & Jing, F. (2002). Electrical conductivity of iron under shock compression up to 200 GPa. Journal of Physics: Condensed Matter, 14, 10849. https://doi.org/10.1088/0953-8984/14/44/389.

Boyd, F.R., Pearson, D.J., Hoal, K.O., Hoal, B.J., Nixon, P.H., Kingston, M.J., & Mertzman, S.A. (2004). Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations. Lithos, 77(1-4), 573—592. https://doi.org/10.1016/j.lithos.2004.03.010.

Brandon, A.D., & Walker, R.J. (2005). The debate over core-mantle interaction. Earth and Planetary Science Letters, 232(3-4), 211—225. https://doi.org/10.1016/j.epsl.2005.01.034.

Busse, F. (1975). A model of the geodynamo. Geophysical Journal International, 42(2), 437—459. https://doi.org/10.1111/j.1365-246X.1975.tb05871.x.

Carlson, R.W., Pearson, D.G., & James, D.E. (2005). Physical, chemical and chronological characteristics of continental mantle. Reviews of Geophysics, 43, RG1001. https://doi.org/10. 1029/2004RG000156.

Chen, B., Li, Z., Zhang, D., Liu, J., Hu, M.Y., Zhao, J., Bi, W., Alp, E.E., Xiao, Y., Chow, P., & Li, J. (2014). Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe7C3. Proceedings of the National Academy of Sciences, 111, 17755—17758. https://doi.org/10. 1073/pnas.141115411.

Cottaar, S., & Romanowicz, B. (2012). An unsual¬ly large ULVZ at the base of the mantle near Haw¬aii. Earth and Planetary Science Letters, 355, 213—222. https://doi.org/10.1016/j.epsl. 2012.09.005.

Courtillot, V., Davaille, A., Besse, J., & Stock, J. (2003). Three distinct types of hotspots in the Earth’s mantle. Earth and Planetary Scien¬ce Letters, 205(3-4), 295—308. https://doi.org/10. 1016/S0012-821X(02)01048-8.

Cvetković, V., Downes, H., Höck, V., Pre¬le¬vić, D., & Lazarov, M. (2010). Mafic alka¬line metasomatism in the lithosphere underneath East Serbia: evidence from the study of xenoliths and the host alkalibasalts. Geol. Soc., London, Spec. Publ., 337, 213—239. https://doi.org/10.1144/SP337.11.

Davies, C.J., & Mound, J.E. (2019). Mantle-induced temperature anomalies do not reach the inner core boundary. Geophysical Journal International, 219, S21— S32. https://doi.org/ 10.1093/gji/ggz254.

Dawson, J.B. (2002). Metasomatism and partial melting in upper-mantle peridotite xenoliths from the Lashaine volcano, Northern Tanzania. Journal of Petrology, 43(9), 1749—1777. https://doi.org/10.1093/petrology/43.9.1749.

Driscoll, Р., & Davies, С. (2022). The «New Core Paradox»: Challenges and Potential Solutions. Journal of Geophysical Research: Solid Earth, 128(1). https://doi.org/10.1029/2022JB025355.

Duan, J., Shim, Y., & Kim, Н.J. (2006). Solvation in supercritical water. The Journal of Che¬mical Physics, 124, 204504. https://doi.org/10.1063/ 1.2194012.

Dziewonski, A.M., & Anderson, D.L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297—356. https://doi.org/10.1016/0031-9201(81)90046-7.

Eaton, D.W., & Kendall, J.-M. (2006). Improving seismic resolution of outermost core structure by multichannel analysis and deconvolution of broadband SmKS phases. Physics of the Earth and Planetary Interiors, 155(1-2), 104—119. https://doi.org/10.1016/j.pepi.2005.10.007.

Fischer, R.A., Nakajima, Y., Campbell, A.J., Frost, D.J., Harries, D., Langenhorst, F., Miya¬ji¬ma, N., Pollok, K., & Rubie, D.C. (2015). High pressure metal—silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochimica et Cosmo-chi¬mica Acta, 119, 2810—2827. https://doi.org/10.1016/ j.gca.2015.06.026.

Fu, S., Chariton, S., Prakapenka, V.B., & Shim, S.-H.D. (2023). Core origin of seismic velocity anomalies at Earth’s core–mantle boundary. Nature, 615, 646—651. https://doi.org/10.1038/s41586-023-05713-5.

Galkin, А.А., & Lunin, V.V. (2005). Subcritical and supercritical water: a universal medium for chemical reactions. Russian Chemical Reviews, 74(1), 21. https://doi.org/10.1070/RC2005v074 n01ABEH001167.

Garnero, E.J., & Helmberger, D.V. (1996). Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central Pacific. Geophysical Research Letters, 23(9), 977—980. https://doi.org/10.1029/95GL03603.

Girnis, A.V., Brey, G.P., & Ryabchikov, I.D. (1995). Origin of Group 1A kimberlites: Fluid-saturated melting experiments at 45—55 kbar. Earth and Planetary Science Letters, 134(3-4), 283—296. https://doi.org/10.1016/0012-821X(95)00120-2.

Gomi, H., Ohta, K., Hirose, K., Labrosse, S., Caracas, R., Verstraete, M.J., & Hernlund, J.W. (2013). The high conductivity of iron and thermal evolution of the Earth’s core. Physics of the Earth and Planetary Interiors, 224, 88—103. https://doi.org/10.1016/j.pepi.2013.07.010.

Gudfinnsson, G.H., & Presnal, D.C. (2005). Continuоus gradations among primary carbonatic, melilitic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3—8 GPa. Journal of Petrology, 46, 1645—1659. https://doi.org/10.1093/petrology/egi029.

He, Y., & Wen, L. (2012). Geographic boundary of the «Pacific Anomaly» and its geometry and transitional structure in the north. Journal of Geophysical Research: Solid Earth, 117, B09308. https://doi.org/10.1029/2012JB009436.

Helffrich, G., & Kaneshima, S. (2010). Outer-core compositional stratification from observed core wave speed profiles. Nature, 468, 807—810. https://doi.org/10.1038/nature09636.

Helmberger, D., Ni, S., Wen, L., & Ritsema, J. (2000). Seismic evidence for ultralow-velo¬city zones beneath Africa and eastern Atlantic. Journal of Geophysical Research: Solid Earth, 105(B10), 23865—23878. https://doi.org/ 10.1029/2000JB900143.

Helmberger, D., Wen, L., & Ding, X. (1998). Seismic evidence that the source of the Iceland hotspot lies at the core-mantle boundary. Nature, 396, 251—255. https://doi.org/10.1038/24357.

Hernlund, J.W., & McNamara, A.K. (2015). The core-mantle boundary region. In G. Schubert (Ed.), Treatise on Geophysics (Vol. 7, pp. 461—519). Oxford: Elsevier.

Hirao, N., Kondo, T., Ohtani, E., Takemura, K., & Kikegawa, T. (2004). Compression of iron hydride to 80 GPa and hydrogen in the Earth’s inner core. Geophysical Research Letters, 31, L06616. https://doi.org/10.1029/2003GL019380.

Hirose, K., Labrosse, S., & Hernlund, J. (2013). Com¬position and state of the core. Annual Re¬view of Earth and Planetary Sciences, 41, 657—691. https://doi.org/10.1146/annurev-earth- 050212-124007.

Huang, H., Fei, Y., Cai, L., Jing, F., Hu, X., Xie, H., Zhang, L., & Gong, Z. (2011). Evidence for an oxy¬gen-depleted liquid outer core of the Earth. Na¬ture, 479, 513—516. https://doi.org/10.1038/na¬ture10621.

Humayun, M., Qin, L., & Norman, M.D. (2004).Geochemical evidence for excess iron in the mantle beneath Hawaii. Science, 306, 91—94. https://doi.org/10.1126/science.1101050.

Ionov, D.A., Bodinier, J.-L., Mukasa, S.B., & Zanetti, A. (2002). Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenolits from Spitsbergen in the context of numerical mode-ling. Journal of Petrology, 43(12), 2219—2259. https://doi.org/10.1093/petrology/43.12.2219.

Ivanov, A.V., Mukasa, S.B., Kamenetsky, V.S., Ackerson, M., Demonterova, E.I., Pokrov¬sky, B.G., Vladykin, N.V., Kolesnichenko, M.V., Litasov, K.D., & Zedgenizov, D.A. (2018). Volatile concentrations in olivine-hosted melt inclusions from meimechite and melanepheli¬nite lavas of the Siberian Traps Large Igneous Province: Evidence for flux-related high-Ti, high-Mg magmatism. Chemical Geology, 483, 442—462. https://doi.org/10.1016/j.chemgeo. 2018.03.011.

Jakobsson, S., & Holloway, J.R. (2008). Mantle me¬lting in equilibrium equilibrium with an Iron-Wüstite-Graphite buffered COH-fluid. Contributions to Mineralogy and Petrology, 155, 247—256. https://doi.org/10.1007/s00410-007-0240-6.

Jensen, K.J., Thorne, M.S., & Rost, S. (2013). SPdKS analysis of ultralow-velocity zones be¬neath the western Pacific. Geophysical Research Letters, 40(17), 4574—4578. https://doi.org/10.1002/grl.50877.

Jones, A.G., Plomerova, J., Korja, T., Sodoudi, F., & Spakman, W. (2010). Europe from the bottom up: A statistical examination of the central and northern European lithosphere-asthenosphere boundary from comparing seismological and electromagnetic observations. Lithos, 120(1-2), 14—29. https://doi.org/10.1016/j.lithos.2010.07.013.

Jones, C.A. (2015). Thermal and compositional convection in the outer core. In G. Schubert (Ed.), Treatise on Geophysics (Vol. 8, pp. 133—186). Oxford: Elsevier.

Kaeser, B., Kalt, A., & Pettke, T. (2006). Evolution of the Lithospheric Mantle beneath the Mar¬sabit Volcanic Field (Northern Kenya): Constraints from Textural, P—T and Geochemical Studies on Xenoliths. Journal of Petrology, 47(11), 2149—2184. https://doi.org/10.1093/petrology/egl040.

Karki, В.В., Dipta, B.G., & Karato, S. (2021). Beha¬vior and properties of water in silicate melts under deep mantle conditions. Scientifc Reports, 11(1), 10588. https://doi.org/10.1038/s41598-021-90124-7.

Kennett, B., Engdahl, E., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal Internatio¬nal, 122(1), 108—124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x.

Komabayashi, T. (2014). Thermodynamics of melting relations in the system Fe-FeO at high pressure: Implications for oxygen in the Earth’s core. Journal of Geophysical Research: Solid Earth, 119(5), 4164—4177. https://doi.org/10.1002/2014JB010980.

Lay, T., Garnero, E.J., & Williams, Q. (2004). Partial melting in a thermo-chemical boundary layer at the base of the mantle. Physics of the Earth and Planetary Interiors, 146, 441—467. https://doi.org/10.1016/j.pepi.2004.04.004.

Lesher, C.E., Pickering-Witter, J., Baxter, G., & Walter, M. (2003). Melting of garnet peridotite: Effects of capsules and thermocouples, and implications for the high-pressure mantle solidus. American Mineralogist, 88(8-9), 1181—1189. https://doi.org/10.2138/am-2003-8-901.

Li, J., & Fei, Y. (2014). Experimental constraints on core composition. In G. Schubert (Ed.), Treatise on Geophysics (Vol. 3, pp. 527—557). Oxford: Elsevier.

Liu, Z., Ionov, D.A., Nimis, P., Yigang, Xu.Y., He, P., & Golovin, А.V. (2022). Thermal and compositional anomalies in a detailed xenolith-based lithospheric mantle profile of the Siberian craton and the origin of seismic midlithosphere discontinuities. Geology, 50, 891—896, https://doi.org/10.1130/G49947.1.

Maruyama, S., Yuen, D.A., & Windley, B.F. (2007). Dynamics of plumes and superplumes through time. In D.A. Yuen, S. Maruyama, S. Karato, B.F. Windley (Eds.), Superplumes: Beyond Plate Tectonics (pp. 441—502). Springer.

Mattsson, Т., & Desjarlais, М.Р. (2006). Phase Diagram and Electrical Conductivity of High Energy-Density Water from Density Functional Theory. Physical Review Letters, 97, 017801. https://doi.org/10.1103/PhysRevLett.97. 017801.

McDonough, W.F. (2014) Compositional model for the Earth’s core. In H.D. Holland, K.K. Turekian (Eds.), Treatise on Geochemistry (Vol. 3, pp. 559—577). Oxford: Elsevier.

McDonough, W.F., & Sun, S.-S. (1995). The composition of the Earth. Chemical Geology, 120(3-4), 223—253. https://doi.org/10.1016/0009-2541(94)00140-4.

Monville, R., Vidal, J., Cébron, D., & Schaeffer, N. (2019). Rotating double-diffusive convection in stably stratified planetary cores. Geophysical Journal International, 219, S195—S218. https://doi.org/10.1093/gji/ggz347.

Murakami, M., Hirose, K., Kawamura, K., Sata, N., & Ohishi, Y. (2004). Post-perovskite phase transition in MgSiO3 Science, 304, 855—858. https://doi.org/10.1126/science.1095932.

Nguyen, J.H., & Holmes, N.C. (2004). Mel¬ting of iron at the physical conditions of the Earth’s core. Nature, 427, 339—342. https://doi.org/ 10.1038/nature02248.

Nimmo, F. (2015). Energetics of the core. Treatise on Geophysics. In G. Schubert (Ed.), Treatise on Geophysics (Vol. 8, pp. 27—55). Oxford: Elsevier.

Oganov, A.R., & Glass, C.W. (2006). Crystal structure prediction using ab initio evolutio¬nary techniques: principles and applications. Journal of Chemical Physics, 124(24), 244704. https://doi.org/10.1063/1.2210932.

Oganov, A.R., & Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D’’ layer. Nature, 430, 445—448. https://doi.org/10.1038/nature 02701.

Ohtani, E. (2013). Chemical and physical properties and thermal state of the core. In S. Karato (Ed.), Physics and chemistry of the deep Earth (pp. 244—270). Oxford: Wiley-Blackwell.

Ozawa, H., Hirose, K., Mitome, M., Bando, Y., Sata, N., & Ohishi, Y. (2009). Experimental study of reaction between perovskite and molten iron to 146 GPa and implications for chemically distinct buoyant layer at the top of the core. Physics and Chemistry of Minerals, 36, 355—363. https://doi.org/10.1007/s00269-008-0283-x.

Ozawa, H., Takahashi, F., Hirose, K., Ohishi, Y., & Hirao, N. (2011). Phase transition of FeO and stratification in Earth’s outer core. Science, 334, 792—794. https://doi.org/10.1126/science.1208265.

Palme, H., & O’Neill, H.St.C. (2014). Cosmochemical estimates of mantle composition. Treatise on Geochemistry. In H.D. Holland, K.K. Turekian (Eds.), Treatise on Geochemistry (Vol. 3, pp. 1—39). Oxford: Elsevier.

Pavlenkova, G.A., & Pavlenkova, N.I. (2006). Upper mantle structure of the Northern Eurasia from peaceful nuclear explosion data. Tectonophy¬sics, 416(1-4), 33—52. https://doi.org/10.1016/j.tecto.2005.11.010.

Pearson, D.J., Canil, D., & Shirey, S.B. (2005). Mantle Samples Included in Volcanics Rocks: Xenoliths and Diamonds. In R.W. Carlson (Ed.), The Mantle and Core (pp. 171—276). Oxford: Elsevier.

Poirier, J.P. (1994). Light elements in the Earth’s outer core: a critical review. Physics of the Earth and Planetary Interiors, 85(3-4), 319—337. https://doi.org/10.1016/0031-9201(94)90120-1.

Pradhan, G.K., Fiquet, G., Siebert, J., Auzende, A.-L., Morard, G., Antonangeli, D., & Garbarino, G. (2015). Melting of MORB at core-mantle boundary. Earth and Planetary Science Letters, 431, 247—255. https://doi.org/10.1016/j.epsl.2015.09.034.

Prescher, C., Dubrovinsky, L., Bykova, E., Kupenko, I., Glazyrin, K., Kantor, A., McCammon, C., Mookherjee, M., Nakajima, Y., & Miyajima, N. (2015) High Poisson’s ratio of Earth’s inner core explained by carbon alloying. Nature Geosci¬en¬ces, 8, 220—223. https://doi.org/10.1038/ngeo2370.

Reasoner, C., & Revenaugh, J. (2000). ScP constraints on ultralow-velocity zone density and gradient thickness beneath the Pacific. Journal of Geophysical Research: Solid Earth, 105(B12), 28173—28182. https://doi.org/10. 1029/2000JB900331.

Rost, S., Garnero, E.J., Thorne, M.S., & Hutko, A.R. (2010). On the absence of an ultralow-velocity zone in the North Pacific. Journal of Geophysical Research: Solid Earth, 115, B04312. https://doi.org/10.1029/ 2009JB006420.

Ryabchikov, I.D., Solovova, I.P., Ntaflos, Th., Büchl, A., & Tikhonenkov, P.I. (2001). Subalkaline picrobasalts and plateau basalts from Putorana plateau (Siberian CFB province). II. Melt inclusion chemistry, composition of «primary» magmas and P-T regime at the base superplume. Геохимия, (5), 484—497.

Schubert, G., Anderson, J.D., Spohn, T., & McKinnon, W.B. (2004). Interior composition, structure and dynamics of the Galilean satellites. In F. Bagenal, T. Dowling, W.B. McKinnon (Eds.), Jupiter: The planet, satellites and magnetosphere (pp. 281—306). Cambridge Univ. Press.

Shibazaki, Y., Ohtani, E., Fukui, H., Sakai, T., Kamada, S., Ishikawa, D., Tsutsui, S., Baron, A.Q., Nishitani, N., & Hirao, N. (2012). Sound velocity measurements in dhcp-FeH up to 70 GPa with inelastic X-ray scattering: Implications for the composition of the Earth’s core. Earth and Planetary Science Letters, 313, 79—85. https://doi.org/10.1016/j.epsl.2011.11.002.

Simmons, N.A., Forte, A.M., & Grand, S.P. (2007). Thermochemical structure and dynamics of the African superplume. Geophysical Research Letters, 34, L02301. https://doi.org/10.1029/2006GL028009.

Stacey, F.D., & Davis, P.M. (2008). Physics of the Earth. 4th ed. Cambridge: Cambridge Univ. Press, 532 p.

Suzuki, A., & Ohtani, E. (2003). Density of peridotite melts at high pressure. Physics and Chemistry of Minerals, 30, 449—456. https://doi.org/10.1007/s00269-003-0322-6.

Tackley, P.J. (2012). Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth-Science Reviews, 110(1-4), 1—25. https://doi.org/10.1016/j.earscirev.2011.10.001.

Takahashi, E. (1986). Melting of a dry peridotite KLB-1 up to 14 GPa implications on the origin of peridotite upper mantle. Journal of Geophy¬sical Research: Solid Earth, 91(B9), 9367—9382. https://doi.org/10.1029/JB091iB09p09367.

Tateno, S., Hirose, K., Ohishi, Y., & Tatsumi, Y. (2010). The structure of iron in Earth’s inner core. Science, 330, 359—361. https://doi.org/10.1126/science.119466.

Tateno, S., Hirose, K., & Ohishi, Y. (2014). Melting experiments on peridotite to lowermost mantle conditions. Journal of Geophysical Research: Solid Earth, 119, 4684—4694. https://doi.org/10.1002/2013JB010616.

Thorne, M.S., Garnero, E.J., & Grand, S.P. (2004). Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Physics of the Earth and Planetary Interiors, 146(1-2), 47—63. https://doi.org/10.1016/j.pepi.2003.09.026.

Thybo, H., Janik, T., Omelchenko, V.D., Grad, M., Garetsky, R.G., Belinsky, A.A., Karataev, G.I., Zlotski, G., Knudsen, U.E., Sand, R., Yliniemi, J., Tiira, T., Luosto, U., Komminaho, K., Giese, R., Guterch, A., Lund, C.-E., Kharitonov, O.M., Ilchenko, T., Lysynchuk, D.V., Skobelev, V.M., & Doody, J.J. (2003). Upper lithosperic seismic velocity structure across the Pripyat Trough and Ukrainian Shield along the EUROBRIDGE’97 profile. Tectonophysics, (1-4), 371, 41—79. https://doi.org/10.1016/S0040-1951(03)00200-2.

Torsvik, T.H., van der Voo, R., Doubrovine, P.V., Burke, K., Steinberger, B., Ashwal, L.D., Trønnes, R.G., Webb, S.J., & Bull, A.L. (2014). Deep mantle structure as a reference frame for movements in and on the Earth. Proceedings of the National Academy of Sciences, 111, 8735—8740. https://doi.org/10.1073/pnas.1318135111.

Trampert, J., Deschamps, F., Resovsky, J., & Yuen, D. (2004). Probabilistic tomography maps chemical heterogeneities throughout the lo¬wer mantle. Science, 306, 853—856. https://doi.org/10.1126/science.1101996.

Walter, M.J. (1998). Melting of garnet peridotite and the origin of komatiiteand depleted lithosphere. Journal of Petrology, 39, 29—60. https://doi.org/10.1093/petroj/39.1.29.

Wänke, H., & Dreibus, G. (1988). Chemical composition and accretion history of terrestrial planets. Philosophical Transactions of the Royal Society of London, 325, 545—557. https://doi.org/10.1098/rsta.1988.0067.

Wyllie, P.J. (1977). Effects of Н2О and СО2 on magma generation in the crust and mantle. Journal of the Geological Society, 134, 215—234. https://doi.org/10.1144/gsjgs.134.2.0215.

Wyllie, P.J., & Ryabchikov, I.D. (2000). Volatile components, magmas, and critical fluids in upwelling mantle. Journal of Petrology, 41(7), 1195—1205. https://doi.org/10.1093/petrology/ 41.7.1195.

Wysession, M.E., Lay, T., Revenaugh, J., Williams, Q., Garnero, E.J., Jeanloz, R., & Kellogg, L.H. (1998). The D’’ discontinuity and its implications. In M. Gurnis, M.E. Wysession, E. Knittle, B.A. Buffett (Eds.), The core-mantle boundary region (Vol. 28, pp. 273—297). Washington: Am. Geophys. Union. https://doi.org/10.1029/GD028p0273.

Published

2023-08-30

How to Cite

Usenko, O. (2023). The effect of the mantle and core matter phase state on the course of geodynamic processes. Geofizicheskiy Zhurnal, 45(4). https://doi.org/10.24028/gj.v45i4.286287

Issue

Section

Articles