Ophiolite complex of Piedmont-Ligurian basin (Northern Apennines)

Authors

  • T. Yegorova Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • A. Murovskaya Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gj.v45i5.289112

Keywords:

Northern Apennines, Piedmont-Ligurian basin, Ligurides, ophiolites, peridotites, accretion wedge (prism)

Abstract

The Northern Apennines contain remnants of the Piedmont-Ligurian Basin (PLB) or ocean, which during the Late Mesozoic time (mainly in the Jurassic) separated the paleo-Europe (Iberian plate) from the southern paleocontinent Adria at the Africa promontory. The closure of the PLB and subsequent collision of Europe/Adria in Cretaceous-Cenozoic time led to the exhumation of the ophiolite complex of Northern Apennines in the Ligurian units. The paper gives information obtained by the authors during several field trips on the composition of the ophiolite complex of the Northern Apennines, representative of the composition and structure of the oceanic lithosphere. The latter, absent in the territory of Ukraine, is a key question to understanding the evolution of the oceanic crust, subduction processes, and formation of accretion wedges in the transitional zones to the continents. The Ligurian ophiolites of the PLB constitute an accessible and unique window to track the opening and evolution of the slow-spreading oceanic lithosphere. The Internal Ligurian ophiolites consist of km-scale gabbroic bodies intruded into depleted mantle peridotites and bear remarkable structural and compositional similarities to oceanic lithosphere from slow and ultra-slow spreading ridges. The External Ligurian ophiolites, associated with continental crust material and transition zone between the oceanic and continental crust, include mantle sequences retaining a subcontinental lithospheric origin. The gabbro-peridotite associations from the Internal Ligurian ophiolites were explored in the Bracco-Levanto ophiolite massif, which includes a km-scale gabbroic body, recalling the oceanic core complexes from modern spreading centres, intruded into the mantle peridotites. The peridotites and the gabbros from these ophiolites record a composite history involving deformation and alteration from high temperature to seafloor conditions. The top of the peridotites is covered by tectono-hydrothermal breccias (ophicalcites), radiolarites, and sedimentary breccias that testify to the exposure of peridotites at the seafloor. This succession is then covered by basalts pillow-lavas. Thus, the almost full section of the ophiolite complex is represented here.

References

Abbate, E., Bortolotti, V., & Principi, G. (1980). Apennine ophiolites: a peculiar oceanic crust. Ofioliti, 5(1), 59—96.

Argand, E. (1924). La tectonique de l’Asie. Comptes Rendus Congrés Géologique International, XIII, Belgique, 1 (pp. 171—372).

Beccaluva, L., Macciotta, G., Piccardo, G.B., & Zeda, O. (1984). Petrology of lherzolitic rocks from the Northern Apennine ophi-olites. Lithos, 17, 299—316.https://doi.org/10.1016/0024-4937(84)90027-6.

Bigi, G., Cosentino, D., Parotto, M., Sartori, R., & Scandone, P. (1990). Structural Model of Italy. Scale 1:500,000. C.N.R. Pro-getto Finalizzato Geodinamica, Roma.

Blackman, D.K., Ildefonse, B., John, B.E. et al. (2011). Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-AtlanticRidge 30N. Journal of Geophysical Research: Solid Earth, 116, B07103. https://doi.org/10.1029/2010JB007931.

Blackman, D.K., Ildefonse, B., John, B.E., Ohara, Y., Miller, D.J., MacLeod, C.J., & Expedition 304/305 Scientists. (2006). Proc. of the Integrated Ocean Drilling Program. Vol. 304/305, College Station, Texas, Integrated Ocean Drilling Program Man-agement International, Inc, https://doi.org/10.2204/iodp proc3043052006.

Bortolotti, V., Principi, G., & Treves, B. (2001). Ophiolites, Ligurides and the tectonic evolution from spreading to convergence of a Mesozoic Western Tethys segment. In: G.B. Vai, I.P. Martini (Eds.), Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins (pp. 151—164). Dordrecht: Kluwer Academic Publishers.

Castellarin, A. (2001). Alps-Apennines and Po Plain-frontal Apennines relations. In G.B. Vai, J.P. Martini (Eds.), Anatomy of an Orogen: The Apennines and the Adjacent Mediterranean Basins (pp. 177—195). Kluwer Academic, Norwell, Mass.

Carmignani, L. Giglia, G., & Kligfield, R. (1978). Structural evolution of the Apuane Alps: An example of continental margin deformation in the Northern Apennine. Journal of Geology, 86(4), 487—504. https://doi.org/10.1086/ 649714.

Conti, P., Cornamusini, G., & Carmignani, L. (2020).

An outline of the geology of the Northern Apennines (Italy), with geological map at 1:250,000 scale. Italian Journal of Geo-sciences, 139(2), 149—194. https://doi.org/10.3301/IJG.2019.25.

Cortesogno, L., Galbiati, B. & Principi, G. (1987). Note alla «Carta Geologica delle ofioliti del Brac¬co» e ricostruzione della paleogeografia giu¬rassico-cretacica. Ofioliti, 12, 261—342.

Decandia, F.A., & Elter, P. (1972). La «zona» ofiolitifera del Bracco, nel settore compreso tra Levanto e la Val Graveglia. Memo-rie della Società Geologica Italiana, 11, 503—530.

Doglioni, C. (1991). A proposal for the kinematic modelling of W-dipping subductions — possible applications to the Tyrrhenian-Apennines system. Terra Nova, 3(4), 423—434. https://doi.org/10.1111/j.1365-3121.1991.tb00172.x.

Elter, P. (1975). L’ensemble ligure. Bulletin de la Société Géologique de France, 17, 984—997.

Finetti, I.R., Boccaletti, M., Bonini, C., Del Ben, A., Geletti, R., Pipan, M., & Sani, F., (2001). Crustal section based on CROP seismic data across the North Tyrrhenian-Northern Apennines-Adriatic Sea. Tectonophysics, 343, 135—163. https://doi.org/10.1016/S0040-1951(01)00141-X.

Fonnesu, M., & Felletti, F. (2019).Facies and architecture of a sand rich turbidite system in an evolving collisional-trench basin: a case history from the Upper Cretaceous-Palaeocene Gottero system (NW Apennines). Rivista Italiana di Paleontologia e Stratigrafia, 125(2), 449—487. https://dx.doi.org/10.13130/2039-4942/11789.

Hebert, R., Serri, G., & Hekinian, R. (1989).Mineral chemistry of ultramafic tectonites and ultramafic to gabbroic cumulates from the major oceanic basins and northern Apennines ophiolites (Italy) A comparison, Chemical Geology, 77(3-4), 183—207. https://doi.org/10.1016/0009-2541(89)90074-0.

Lagabrielle, Y., & Cannat, M. (1990). Alpine Jurassic ophiolites resemble the modern central Atlantic Basement. Geology, 18, 319—322.

Laubscher, H.P. (1991). The arcs of western Alps today. Eclogae Geologique Helvetique, 84, 613—651. https://doi.org/10.1130/0091-7613 (1990)018<0319:AJORTM>2.3.CO;2.

Laubscher, H.P. (1971). The large scale kinematics of the western Alps and the northern Apennines and its palinspastic implica-tions. American Journal of Sciences, 271, 193—226.https://doi.org/10.2475/ajs.271.3.193.

Lemoine, M., Boillot, G., & Tricart, P. (1987). Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apen-nines): in search of a genetic model. Geology, 15(7), 622—625.

Manatschal, G. (2004). New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93(3), 432—466. https://doi.org/10.1007/s00531-004-0394-7.

Manatschal, G., & Bernoulli, D. (1999). Architecture and tectonic evolution of nonvolcanic margins: present-day Galicia and an-cient Adria. Tectonics, 18(6), 1099—1119. https://doi.org/10.1029/1999TC900041.

Manatschal, G., & Muntener, O. (2009). A type sequence across an ancient magma-poor ocean-continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics, 473(1-2), 4—19. https://doi.org/10. 1016/j.tecto.2008.07.021.

Marini, M. (1991).Considerations on the sandstone bodies of the Monte Gottero Unit west of the Bracco Massif (Ligurian Apen-nines, Italy). GiornalediGeologia, 53(2), 207—2018.

Marroni, M., Meneghini, F., & Pandolfi, L. (2017). A revised subduction inception model to explain the Late Cretaceous, double vergentorogeny in the pre-collisional Western Tethys: evidence from the Northern Apennines. Tectonics, 36, 2227—2249. https://doi.org/10.1002/2017TC004627.

Marroni, M., Meneghini, F., & Pandolfi, L. (2004). From accretion to exhumation in a fossil accretionary wedge: a case history from Gottero unit (Northern Apennines, Italy). Geodinamica Acta, 17, 41—53. https://doi.org/10.3166/ga.17.41-53.

Marroni, M., Meneghini, F., Pandolfi, L., Hobbs, N., & Luvisi, E. (2019). The Ottone-Levanto Line of Eastern Liguris (Italy) un-covered: a Late Eocene-Early Oligocene snapshop of Northern Apennine geodynamics at the Alps/Apennines Junction. Epi-sodes, 42(2), 107—118. https://doi.org/10.18814/epiiugs/2019/019009.

Marroni, M., Molli, G., Montanini, A., & Tribuzio, R. (1998). The association of continental crust rocks with ophiolites in the Northern Apennines (Italy): implications for the continent-ocean transition in the Western Tethys. Tectonophysics, 292(1-2), 43—66. https://doi.org/10.1016/S0040-1951(98)00060-2.

Marroni, M., & Pandolfi, L. (2001). Debris flow and slide deposits at the top of the Internal Ligurideophiolitic sequence, Northern Apennines, Italy: a record of frontal tectonic erosion in a fossil accretionary wedge. The Island Arc, 10(1), 9—21.

Marroni, M., & Pandolfi, L. (1996). The deformation history of an accreted ophiolite sequence: the Internal Liguride units (North-ern Apennines, Italy), Geodinamica Acta, 9(1), 13—29. https://doi.org/10.1080/09853111.1996.11417260.

Menna, F., (2009). From magmatic to metamorphic deformation in a Jurassic Ophiolitic Complex: the Bracco Gabbroic Massif, Eastern Liguria (Italy). Ofioliti, 34, 109—130.

Molli, G. (2008). Northern Apennine-Corsica orogenic system: an updated overview. In S. Siegesmund, B. Fugenschuh, & N. Froitzheim (Eds.), Tectonic Aspects of the Alpine-Dinaride-Carpathian System (Vol. 298, pp. 413—442). Geol. Soc. Lon-don Spec. Publ.

Molli, G., Crispini, L., Malusà, M., Mosca, P., Piana, F., & Federico, L. (2010). Geology of the Western Alps-Northern Apennine junction area: a regional review. In M. Beltrando et al. (Eds.), The Geology of Italy, Journal of the Virtual Explorer (Vol. 36, paper 9).

Montanini, A., Tribuzio, R., & Vernia, L. (2008). Petrogenesis of basalts and gabbros from an ancient continent-ocean transition (External Liguride ophiolites, Northern Italy), Lithos, 101(3-4), 453—479. https://doi.org/10.1016/j.lithos.2007.09.007.

Pandolfi, L. (1996). Le arenarie del M. Gottero nella sezione di Punta Mesco (Campaniano sup.-Paleocene inf., Appenninosettentrionale): analisi stratigrafica e petrografica della parte prossimale di un sistema torbiditico. Atti della SocietàToscana di Scienze Naturali, Memorie, Serie A, 103, 197—208.

Pini, G.A. (1999). Tectonosomes and Olistostromes in the ArgilleScagliose of the Northern Apennines, Italy.Geological Society of America, Boulder, 70 p.

Principi, G., Bortolotti, V., Chiari, M., Cortesogno, L., Gaggero, L., Marcucci, M., Saccani, E., & Treves, B. (2004). The pre-orogenic volcano-sedimentary covers of the Western Tethys oceanic basin: a review. Ofioliti, 29, 177—212.

Rampone, E., & Hofmann, A.W. (2012).A global overview of isotopic heterogeneities in the oceanic mantle.Lithos, 148, 247—261. https://doi.org/10.1016/j.lithos.2012.06.018.

Rampone, E., Hofmann, A.W. & Raczek, I. (1998). Isotopic contrasts within the Internal Ligurideophiolite (N Italy): the lack of a genetic mantle-crust link. Earth and Planetary Science Letters, 163, 175—189. https://doi.org/10.1016/S0012-821X(98)00185-X.

Rampone, E., Piccardo, G.B., Vannucci, R., & Bottazzi, P. (1997).Chemistry and origin of trapped melts in ophioliticperidotites. Geochimicaet Cosmochimica Acta, 61(21), 4557—4569. https://doi.org/10.1016/S0016-7037(97) 00260-3.

Rampone, E., Hofmann, A.W., Piccardo, G.B., Vannucci, R., Bottazzi, P., & Ottolini, L. (1995). Petrology, mineral and isotope geochemistry of the External Ligurideperidotites (Northern Apennine, Italy). Journal of Petrology, 36, 81—105. https://doi.org/10.1093/petrology/36.1.81.

Rampone, E., Hofmann, A.W., Piccardo, G.B., Vannucci, R., Bottazzi, P., & Ottolini, L. (1996). Trace element and isotope geo-chemistry of depleted peridotites from an N-MORB type ophiolite (Internal Liguride, N. Italy). Cont¬ributions to Mineralogy and Petrology, 123, 61—76. https://doi.org/10.1007/s004100 050143.

Renna, M.R., & Tribuzio, R. (2011). Olivine-rich troctolites from Ligurianophiolites (Italy): evidence for impregnation of replacive mantle conduits by MORB-type melts. Journal of Petrology, 52, 1763—1790.https://doi.org/10.1093/petrology/egr029.

Rosenbaum, G, & Lister, G.S. (2004).Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines and the Sicilian Maghrebides. Tectonics, 23, TC1013. https://doi.org/10.1029/2003TC001518.

Sanfilippo, A., & Tribuzio, R. (2011). Melt transport and deformation history in a nonvolcanicophiolitic section, northern Apen-nines, Italy: Implications for crustal accretion at slow spreading settings. Geochemistry, Geophysics, Geosystems, 12, Q0AG04.https://doi.org/101029/2010GC003429.

Schettino, A., & Turco, E. (2006).Plate kinematics of the Western Mediterranean region during the Oligocene and Early Miocene. Geophysical Journal International, 166, 1398—1423. https://doi.org/10.1111/j.1365-246X.2006.02997.x.Schmid, S.M., Fugenschuh, B., Kissling, E., & Schuster, R. (2004). Tectonic map and overall architecture of the Alpine orogen. Eclogae Ge-ologique Helvetique, 89, 163—180. https://doi.org/10.1007/s00015-004-1113-x.

Serri, G. (1980). Chemistry and petrology of gabbroic complex of the northern Apennines ophiolites. Geol. Surv. Dept. Proc. In-tern. Ophiolite Symposium, Cyprus (pp. 296—313).

Stampfli, G.M., Mosar, J., Marquer, D., Marchant, R., Baudin, T., & Borel, G. (1998). Subduction and obduction processes in the Swiss Alps. Tectonophysics, 296(1-2),159—204. https://doi.org/10.1016/S0040-1951(98)00142-5.

Tiepolo, M., Tribuzio, R., & Vannucci, R. (1997). Mg- and Fe-gabbroids from Northern Apennine ophiolites: parental liquids and igneous differentiation processes. Ofioliti, 22, 57—69.

Tribuzio, R., Thirwall, M.F., & Vannucci, R. (2004).Origin of the gabbro-peridotite association from the Northern Apennine oph-iolites (Italy). Journal of Petrology, 45(6), 1109—2277. https://doi.org/10.1093/petrology/egh006.

Tribuzio, R., Tiepolo, M., Vannucci, R., & Bottazzi, P. (1999). Trace element distribution within the olivine-bearing gabbros from the Northern Apennine ophiolites (Italy): evidence for post-cumulus crystallization in MOR-type gabbroic rocks. Contribu-tions to Mineralogy and Petrology, 134, 123—133. https://doi.org/10.1007/s004100050473.

Tribuzio, R., Tiepolo, M., & Vannucci, R. (2000). Evolution of gabbroic rocks from the Northern Apennine ophiolites (Italy): comparison with the lower oceanic crust from modern slow-spreading ridges. In J. Dilek, E. Moores, D. Elthon, A. Nicolas (Eds.), Ophiolites and oceanic crust: new insights from field studies and Ocean Drilling Program (Vol. 349, pp. 129—138). Geol. Soc. of America Memoir, Spec. Publ.

Vannucci, R., Rampone, E., Piccardo, G.B., Ottolini, L., & Bottazzi, P. (1993). Ophiolitic magmatism in the Ligurian Tethys: an ion microprobe study of basaltic clinopyroxenes, Contributions to Mineralogy and Petrology, 115, 123—137. https://doi.org/10.1007/BF00321215.

Wernicke, B. (1985). Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences, 22, 108—126. https://doi.org/10.1139/e85-009.

Downloads

Published

2023-10-31

How to Cite

Yegorova, T., & Murovskaya, A. (2023). Ophiolite complex of Piedmont-Ligurian basin (Northern Apennines). Geofizicheskiy Zhurnal, 45(5). https://doi.org/10.24028/gj.v45i5.289112

Issue

Section

Articles