RomUkrSeis profile: a model of the deep structure of the lithosphere and its geological and geophysical interpretation. P. I. Density heterogeneity and electrical conductivity anomalies
DOI:
https://doi.org/10.24028/gj.v46i6.314130Keywords:
RomUkrSeis, lithosphere, density distribution, electrical conductivity anomaliesAbstract
For the first time, a 2D gravity model was calculated for the RomUkrSeis profile, and the lithosphere density heterogeneity was analyzed. The synthetic model of the geoelectric heterogeneities of the Earth’s crust and upper mantle was created. It was obtained from 2D―3D modeling of the Earth’s electromagnetic field. An overview of modern ideas about the geological structure of tectonic units along the profile is presented. We propose a deep position of crustal and crustal-mantle faults dividing the Earth’s crust and upper mantle into separate blocks according to the gravity model, taking into account the seismic model and geological-geophysical data. The southwest part of the profile is mainly characterized by a high fragmentation into blocks, while the northeast, by horizontal stratification. The lower densities (2.36―2.76 g/cm3) of the whole Earth’s crust up to 36 km depth in relation to the surrounding structures is confirmed in the Outer Carpathians. According to the gravity model, a low-density zone (2.55―2.60 g/cm3) in the upper crust, which covers the northeastern part of the Apuseni Mountains and partially the Transylvanian basin, is revealed. From the northeast, this zone is limited by the Bistrica-Pryde fault. We identified compaction zones in the lower crust and in two upper mantle blocks in the narrow keel of the Moho boundary; the blocks with the highest densities of 3.41 g/cm3 (to the southwest) and 3.42 g/cm3 (to the northeast) are separated by the Pre-Carpathian fault. The synthetic model of the resistivity distribution along the RomUkrSeis profile is a generalization of the results of geoelectrical models of various degrees of approximation of the geological environment, which were obtained from the experimental data of magnetotelluric sounding and magnetovariational profiling. Anomalies of high electrical conductivity in the Earth’s crust and upper mantle have a complex configuration, different intensity, and depth. They do not always correspond to surface geology. Electrical conductive objects are located at depths from 15 to 25―30 km and are characterized by anomalous resistivity from the first units of Ohm∙m in the Carpathian-Pannonian region to 10―20 Ohm∙m under the Volyn-Podilsk monocline and the western part of the Ukrainian Shield. As a result of the review of available geoelectrical data in the Pannonian-Carpathian region, the lithosphere-asthenosphere boundary depth is assumed to be 70―90 km with a total longitudinal conductivity of up to 6 kS. The descending of the asthenosphere top from 70 to 100 km in the transition zone between the Inner and Outer Eastern Carpathians and its rise to 70 km under the Carpathian Foredeep were revealed. Under the Volyn-Podilsk monocline and the western part of the Ukrainian shield, the total longitudinal conductivity of the asthenosphere does not exceed 1―2 kS.
References
Amashukeli, T.A. (2021). The structure of the lithosphere of the south-western margin of the East European Platform according to the wide-angle deep seismic soundings profiles. Extended abstract of candidate’s thesis. Kyiv, 24 p. (in Ukrainian).
Аndreyeva-Grigorovich, A., Vashchenko, V., Hnylko, O., & Trofymovych, N. (2011). Stratigraphy of neogene deposits of the Ukrainian Carpathians and Fore-Carpathians. Tectonics and Stratigraphy, (38), 67—77. http://doi.org/10. 30836/igs.0375-7773.2011.92245 (in Russian).
Burakhovich, T.K. (2004). Quasi-three-dimentional model of the Carpathian region. Geofizicheskiy Zhurnal, 26(4), 63—74 (in Russian).
Burakhovich, T.K., & Kulik, S.N. (2001). Anisotropy of the deep conductivity of the Ukrainian crystalline shield. Naukovi pratsi Instytutu fundamentalnykh doslidzhen (pp. 15—23). Kyiv: Znannya (in Ukrainian).
Burakhovich, T.K., & Kulik, S.N. (2009). Three-dimensional geoelectric model of the Earth‘s crust and upper mantle of the western part of the Ukrainian Shield and its slopes. Geofizicheskiy Zhurnal, 31(1), 88—99 (in Russian).
Burakhovych, T.K., & Kushnir, A.M. (2024). Geoelectrical inhomogeneities of the lithosphere of the Pripyat-Dnieper-Donetsk basin along the GEORIFT 2013 profile. Geofizicheskiy Zhurnal, 46(3), 32—49. https://doi.org/10.24028/gj.v46i3. 299169 (in Ukrainian).
Burakhovych, T., & Kushnir, A. (2023). History, current state and future prospects of geoelectromagnetic research in ukraine. Visnyk of Taras Shevchenko National University of Kyiv. Geology, (1), 58—66. https://doi.org/10.17721/ 1728-2713.100.07 (in Ukrainian).
Burakhovych, T.K., Kushnir, A.M., & Ilienko, V.A. (2022). Modern geoelectromagnetic researches of the Ukrainian Carpathians. Geofizicheskiy Zhurnal, 44(3), 21—43. https://doi.org/10.24028/gj.v44i3.261966 (in Ukrainian).
Buryanov, V.B., Gordienko, V.V., Kulik, S.N., & Logvinov, I.M. (1983). Integrated Geophysical Study of Continents. Kiev: Naukova Dumka, 176 p. (in Russian).
Belyavskiy, V.V., & Kulik, S.N. (Eds.). (1998). Geoelectric model of the tectonosphere of the Eurasian folded belt and contiguous territories. Kyiv: Znannya, 264 p. (in Russian).
Hnylko, O.M. (2012). Tectonic zoning of the Carpathians in term’s of the terrane tectonics. Article 2. The Flysch Carpathian — ancient accretionary prism Geodynamics, (1), 67—78. https://doi.org/10.23939/jgd2012.01.067 (in Ukrainian).
Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Kovachikova, S., Logvinov, I.M., Tarasov, V.M., & Usenko, O.V. (2011). Ukrainian Carpathians (geophysics, deep processes). Kiev: Logos, 129 p. (in Russian).
Entin, V.A. (2005). Geophysical basis of the Tectonic map of Ukraine, scale 1:1,000,000. Geofizicheskiy Zhurnal, 27(1), 74—84 (in Russian).
Yegorova, T.P., Verpakhovska, О.O., & Murovskaya, G.V. (2022). Three-layer structure of the Carpathian sedimentary prism from the results of seismic migration on the PANCAKE and RomUkrSeis WARR profiles. Geofizicheskiy Zhurnal, 44(2), 152—169. https://doi.org/10. 24028/gj.v44i2.25 (in Ukrainian).
Kozlenko, V.G. (1978). Gravity model of the tectonosphere and normal values of the gravity force. Doklady AN USSR. Series B, (7), 591—593 (in Russian).
Kozlenko, Yu.V., Korchagin, I.M., & Mikhailyuk, S.F. (1997). Software package for processing and interpretation of gravimetric and magnetometric data and geoid anomalies. Bulletin of the Ukrainian Antarctic Center, (1), 245—250 (in Ukrainian).
Krasovskiy, S.S. (1981). Reflection of the dynamicsof the Earth’s crust of the continental type in the gravitational field. Kiev: Naukova Dumka, 262 p. (in Russian).
Kruglov, S.S., & Gursky, D.S. (Eds.). (2007). Tectonic map of Ukraine. Scale 1:1 000 000. Kyiv: UkrDGRI (in Ukrainian).
Kulik, S.N., Lankis, L.K., & Lysenko, Е.S. (1995). The results of numerical modeling of deep geoelectric section in the region of the Eastern Carpathians and adjacent territories. Geofizicheskiy Zhurnal, 44(2), 152—169 (in Russian).
Kutas, R.Y., Krasovsky, S.S., Orliuk, M.I., & Pashkevich, I.K. (1996). Model of the deep structure and tectonic development of the lithosphere of western Ukraine. Geofizicheskiy Zhurnal, 18(6), 18—29 (in Russian).
Kushnir, A.N., & Burakhovich, T.K. (2012). Electrical conductivity anomalies and intraplate earthquakes in the western part of the Ukrainian Shield and Volyn-Podolsk plate. Geofizicheskiy Zhurnal, 34(4), 157—165. https://doi.org/10. 24028/gzh.0203-3100.v34i4.2012.116764 (in Russian).
Chekunov, A.V. (Ed.). (1988). The lithosphere of Central and Eastern Europe. Geotraverse: IV, VI, VIII. Kiev: Naukova Dumka, 170 p. (in Russian).
Chekunov, A.V. (Ed.). (1994). Young platform and Alpine fold belt. Lithosphere of Central and Eastern Europe. Kiev: Naukova Dumka, 332 p. (in Russian).
Makarenko, I.B., Starostenko, V.I., Kuprienko, P.Ya., Savchenko, O.S., & Legostaeva, O.V. (2021). Heterogeneity of the Earth’s crust of Ukraine and adjacent regions according to the results of 3D gravity modeling. Kyiv: Naukova Dumka, 204 p. (in Ukrainian).
Orlyuk, М.І., Bakarjieva, М.І., & Marchenko, А.V. (2022). Magnetic characteristics and tectonic structure of the Earth’s crust of the Carpathian oil and gas region as a component of complex hydrocarbon criteria. Geofizicheskiy Zhurnal, 44(5), 77—105. https://doi.org/10.24028/gj. v44i5. 272328(in Ukrainian).
Rokityansky, I.I., & Ingerov, A.I. (1999). Electromagnetic studies of the Carpathian anomaly of electrical conductivity. Geofizicheskiy Zhurnal, 21(4), 59—70 (in Russian).
Tretyak, K.R., Maksimchuk, V.Yu., & Kutas, R.I. (Eds.). (2015). Modern geodynamics and geophysical fields of the Carpathians and adjacent territories: monograph. Lviv: Lviv Polytechnic Publishing House, 420 p. (in Ukrainian).
Ádám, A., & Wesztergom, V. (2001). An attempt to map the depth of the electrical asthenosphere by deep magnetotelluric measurements in the Pannonian Basin (Hungary). Acta Geologica Hungarica, 44, 167—192.
Ádám, A., Szarka, L., Novák, A., & Wesztergom, V. (2017). Key results on deep electrical conductivity anomalies in the Pannonian Basin (PB), and their geodynamic aspects. Acta Geodaetica et Geophysica, 52, 205—228. https://doi.org/10. 1007/s40328-0160192-2.
Ádám, A., Szarka, L., Prácser, E., & Varga, G. (1996). Mantle plumes or EM distortions in the Pannonian Basin?(Inversion of the deep magnetotelluric (MT) soundings along the Pannonian Geotraverse). Geofizika Közlemények,40, 45—78.
Beşuţiu, L., Gorie, J., Dordea, D., & Sprinceană, V. (2005). Geophysical setting of the deep well 6042 Deleni in central Transylvania-Romania. Revue Roumaine de Géophysique, 49, 73—84.
Bielik, M., Zeyen, H., Starostenko, V., Makarenko, I., Legostaeva, O., Savchenko, S., Dérerová, J., Grinč, M., Godová, D., & Pánisová, J. (2022). A review of geophysical studies of the lithosphere in the Carpathian–Pannonian region. Geologica Carpathica, 73(6), 499—516.
Bogdanova, S.V., Binger, B., Gorbatschev, R., Kheraskova, T.N., Kozlov, V.I., Puchkov, V.N., & Volozh, Yu.A. (2008). The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Research, 160(1-2), 23—45. https://doi.org/10.1016/j.precamres. 2007.04.024.
Bortolotti, V., Marroni, M., Nicolae, I., Pandolfi, L., Principi, G., & Saccani, E. (2002). Geodynamic implications of Jurassic ophiolites associated with Island-Arc Volcanics, South Apuseni Mountains, Western Romania. International Geological Review, 44, 938—955. https://doi.org/10.2747/0020-6814.44.10.938.
Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 1—56. https://doi.org/10. 1016/j.palaeo.2004.02.033.
Grad, M. (2019). Podolian, Saxonian and balticplates — Teisseyre—Tornquist Line and theedge of the East European Craton. Geochemistry, 79(3), 422—433. https://doi.org/10. 1016/j.chemer.2019.03.002.
Hoeck, V., & Ionescu, C. (2003). Supra-subduction zone (?) basalts from the Deleni-6042 deep well (Transylvanian Depression, Romania). Acta Mineralogica-Petrographica Szeged, Abstracts Series 5, #45.
Hyndman, R., & Shearer, P. (1989). Water in the lower continental crust: modelling magnetotelluric and seismic reflection results. Geophysical Journal International, 98(2), 343—365. https://doi.org/10.1111/j.1365-246X.1989.tb03357.x.
Ionescu, C., & Hoeck, V. (2004). Geochemical characteristics of the Mesozoic volcanics from the Deleni-6042 deep well (Transylvanian Depression, Romania). In A.A. Chatzipetros, S.B. Pavlides (Eds.), Proc. of the 5th International Symposium on Eastern Mediterranean Geology (Vol. 1, pp. 256—259).
Ionescu, C., Hoeck, V., Tomek, C., Koller, F., Balintoni, I., & Beşuţiu, L. (2009). New insights into the basement of the Transylvanian Depression (Romania). Lithos, 108(1-4), 172—191. https://doi.org/10.1016/j.lithos.2008.06.004.
Jones, A.G. (1999). Imaging the continental upper mantle using electromagnetic methods. Lithos, 48, 57—80. https://doi.org/10.1016/ S0024-4937 (99)00022-5.
Jones, A.G., Plomerova, J., Korja, T., Sodoudi, F., & Spakman, W. (2010). Europe from the bottom up: A statistical examination of the central and northern European lithosphere-asthenosphere boundary from comparing seismological and electromagnetic observations. Lithos, 120, 14—29. https://doi.org/10.1016/j.lithos.2010.07.013.
Jóźwiak, W. (2013). Electromagnetic study of lithospheric structure in the marginal zone of East European Craton in NW Poland. Acta Geophysica, 61, 1101—1129. https://doi.org/10. 2478/s11600-013-0127-z.
Korja, T. (2007). How is the European Lithosphere Imaged by Magnetotellurics? Surveys in Geophysics, 28, 239—272. https://doi.org/10. 1007/s10712-007-9024-9.
Kováč, M., Andreyeva-grigorovich, A., Bajraktarević, Z., Brzobohatý, R., Filipescu, S., Fodor, L., Harzhauser, M., Nagymarosy, A., Oszczypko, N., Pavelić, D., Rögl, F., Saftić, B., Sliva, L., & Studencka, B. (2007). Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geologica Carpathica, 58(6), 579—606.
Kováč, M., Plašienka, D., Soták, J., Vojtko, R., Oszczypko, N., Less, G., Ćosović, V., Fügenschuh, B., & Králiková, S. (2016). Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global and Planetary Change, 140, 9—27. https://doi.org/10.1016/j.gloplacha.2016.03.007.
Krezsek, С., & Bally, A. (2006). The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: Insights in gravitational salt tectonics. Marine and Petroleum Geology, 23(4), 405―442. https://doi.org/10. 1016/j.marpetgeo.2006.03.003.
Krzywiec, P., Kiersnowski, H., & Peryt, T. (2019). Fault-controlled Permian sedimentation in the central Polish Basin (Bydgoszcz-Szubin area) — Insights from well and seismic data. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 170 (3-4), 255—272. https://doi.org/10.1127/zdgg/2019/0198.
Kulik, S.N., Burakhovich, T.K., & Khazan, Ya.M. (2002). Electrical conductivity anomalies in the crust and upper mantle of Ukraine. Acta Geophysica Polonica, 50(4), 547—565.
Matenco, L., Krézsek, C., Merten, S., Schmid, S., Cloetingh, S., & Andriessen, P. (2010). Characteristics of collisional orogens with low topographic build-up: an example from the Carpathians. Terra Nova, 22(2), 155—165. https://doi.org/10.1111/j.1365-3121.2010.00931.x.
Mazur, S., Mikolajczak, M., Krzywiec, P., Malinowski, M., Buffenmyer, V., & Lewandowski, M. (2015). Is the Teisseyre-Tornquist Zone an ancient plateboundary of Baltica? Tectonics, 34(12), 2367—2533. https://doi.org/10.1002/ 2015TC00393
Merten, E., Finlay, J., Johnson, L., Newman, R., Stefan, H., & Vondracek, B. (2010). Factors influencing wood mobilization in streams. Water Resources Research, 46(10), W10514. https://doi.org/10.1029/2009WR008772.
Nakapelyukh, M., Bubniak, I., Yegorova, T., Murovskaya, A., Gintov, O., Shlapinskyi, V., & Vikhot, Yu. (2017). Balanced geological cross-section of the outer Ukrainian Carpathians along the PANCAKE profile. Journal of Geodynamics, 108, 13—25. https://doi.org/10.1016/j.jog. 2017. 05.005.
Narkiewicz, M., Maksym, A., Malinowski, M., Grad, M., Guterch, A., Petecki, Z., Probulski, J., Janik, T., Majdański, M., Ś́roda, P., Czuba, W., Gaczyński, E., & Jankowski, L. (2015). Transcurrent nature of the Teisseyre—Tornquist Zone in Central Europe: results of the POLCRUST-01 deep reflection seismic profile. International Journal of Earth Sciences, 104, 775—796. https: //doi.org/10.1007/s00531-014-1116-4.
Novák, A., Rubóczki, T., Wesztergom, V., Radulian, M., Szakács, A., Molnár, C., & Kovács, I.J. (2024). Lithospheric scale cross-section through the Transylvanian Basin: A joint geophysical and geological survey. Geologica Carpathica, 75(3), 195—211. https://doi.org/10.31577/Geol Carp.2024.11.
Oszczypko, N. (2006). Late Jurassic-Miocene evolution of the Outer Carpathian fold-and thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50(1), 169—194.
Pacześna, J., & Poprawa, P. (2005). Eustatic versus tectonic control on the development of Neoproterozoic and Cambrian stratigraphic sequence of the Lublin-Podlasie Basin (SW margin of Baltica). Geosciences Journal, 9(2), 117—127. https://doi.org/10.1007/BF02910574.
Pavlenkova, N.I. (2004). Low velocity and low electricalresistivity layers in the middle crust. Annals of Geophysics, 47(1), 157—169. https://doi.org/10.4401/ag-3268.
Pecskay, Z., Lexa, J., Szakacs, A., Seghedi, I., Balogh, K., Konecny, V., Zelenka, T., Kovacs, M., Poka, T., Fulpo, A., Marton, E., Panaiotu, C., & Cvetkovic, V. (2006). Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geologica Carpathica, 57 (6), 511—530.
Popescu, B.M. (2021). Transcarpathian Petroleum Province in Romania. Geo-Eco-Marina, 27, 5—35. https://doi.org/10.5281/zenodo.5801082.
Poprawa, P., Krzemińska, E.,Pacześna, J., & Amstrong, R. (2020). Geochronology of the Volyn volcanic complex at the western slope of the East
European Craton — Relevance to the Neopro-
terozoic rifting and the break-up of Rodinia/
Pannotia. Precambrian Research, 346, 105817.
https://doi.org/10.1016/j.precamres.2020.105817.
Roger, M., de Leeuw, A., van der Beek, P., Husson, L., Sobel, E.R., Glodny, J., & Bernet, M. (2023). Construction of the Ukrainian Carpathian wedge from low-temperature thermochronology and tectono-stratigraphic analysis. Solid Earth, 14, 153—179. https://doi.org/10. 5194/se-14-153-2023.
Saccani, E., & Nicolae, I. (2005). Does the South Apuseni Mts. Ophiolitic Nappe extend eastward up the East Carpathians? New Data on Volcanics from the Transylvanian Depression and Transylvanian Nappes (Romania). GEOITALIA
-FIST, 21—23 September 2005. Abstract volume, #29.
Săndulescu, M. (1988). Cenozoic tectonic history of the Carpathians. In L.Royden, F.Horva’th (Eds.), The Pannonian Basin: a study in basin evolution (pp. 17—25). AAPG Membranes 45.
Schmid, S.M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S. Schuster, R., Tischler, M., & Ustaszewski, K. (2008). The Alpine-Carpathian-Dinaridic orogenic system:correla-tion and evolution of tectonic units’. Swiss Journal of Geosciences, 101, 139―183. https://doi.org/10. 1007/s00015-008-1247-3.
Schmid, S.M., Fügenschuh, B., Kounov, A., Matenco, L., Nievergelt, P., Oberhansli, R., Pleuger, J., Schefer, S., Schuster, R., Tomljenovic, B., Ustaszewski, K., & van Hinsbergen, D.J.J. (2020). Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Research, 78, 308—374. https://doi.org/10.1016/j.gr.2019.07.005.
Seghedi, I., Bojar, A.-V., Downes, H., Roşu, E., Tonarini, S., & Mason, P. (2007). Generation of normal and adakite-like calc-alkaline magmas in a non-subductional environment: A Sr-O-H isotopic study of the Apuseni Mountains Neogene magmatic province, Romania. Chemical Geology, 245, 70—88. https://doi.org/10.1016/j.chemgeo.2007.07.027.
Seghedi, I., Downes, H., Pecskay, Z., Thirlwall, M.F., Szakacs, A., Prykhodko, M., & Mattey, D. (2001). Magmagenesis in a subduction-related post-collisional volcanic arc segment: the Ukrainian Carpathians. Lithos, 57, 237—262. https://doi.org/10.1016/S0024-4937(01)00042-1.
Semenov, V.Yu., Pek, J., Adam, A., Jozwiak, W., Ladanyvskyy, B., Logvinov, I., Pushkarev, P., & Vozar, J. (2008). Electrical structure of the upper mantle beneath Central Europe: Results of the CEMES project. Acta Geophysica, 56(4), 957—981. https://doi.org/10.2478/s11600-008-0058-2.
Shumlyanskyy, L., Hawkesworth, C., Dhuime, B., Billström, K., Claesson, S., & Storey, C. (2015). 207Pb/206Pb ages and Hf isotope composition of zircons fromsedimentary rocks of the Ukrainian shield: Crustal growth of thesouth-western part of East European craton from Archaean to Neoproterozoic. Precambrian Research, 260, 39—54. https://doi.org/10.1016/j.precamres.2015.01.007.
Starostenko, V., Janik, T., Mocanu, V., Stephenson, R., Yegorova, T., Amashukeli, T., Czuba, W., Środa, P., Murovskaya, A., Kolomiyets, K., Lysynchuk, D., Okoń, J., Dragut, A., Omelchenko, V., Legostaieva, O., Gryn, D., Mechie, J., & Tolkunov, A. (2020). RomUkrSeis: Seismic model of the crust and upper mantle across the Eastern Carpathians — From the Apuseni Mountains to the Ukrainian Shield. Tectonophysics, 794, 228620. https://doi.org/10.1016/j.tecto.2020.22862.
Tiliţă, M., Lenkey, L., Maţenco, L., Horvath, F., Suranyi, G., & Cloetingh, S. (2018). Heat Flow Modelling in the Transylvanian basin: Implications for the Evolution of the Intra Carpathian Area. Global and Planetary Change, 171, 148—166. https://doi:10.1016/j.gloplacha. 2018.07.007.
Winchester, J.A., Pharaoh, T.C., & Verniers, J. (2002). Paleozoic Amalgamation of CentralEurope: an introduction and synthesis of newresults from recent geological and geophysicalinvestigations. In J.A. Winchester, T.C. Pharaoh, J. Verniers (Eds.), Paleozoic Amalgama-tion of Central Europe (Vol. 201, pp. 1—18). Geol. Soc. London Spec. Publ.
Wybraniec, S., Zhou, S., Thybo, H., Forsberg, R., Perchu Ć.E., Lee, M., Demianov, G.D., & Strakhov, V.N. (1998). EOS, Transactions American Geophysical Union, 79(37), 437—442. https://doi.org/10.1029/98EO00330.
Zhdanov, M.S., Golubev, N.G., Varentsov, I.M., Abramova, L.M., Shneer, V.S., Berdichevsky, M.N., Zhdanova, O.N., Gordienko, V.V., Bilinsky, A.I., & Kulik, S.N. (1986). 2D model fitting of a geomagnetic anomaly in the Soviet Carpathians. Annales Geophysicae, 4B(3), 335—342.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tatiana Burakhovych
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).