Comments on «On the magnetic field of the oceans» by V.V. Gordienko
Abstract
In a recent article [Gordienko, 2024], V. Gordienko, a consistent opponent of plate tectonics (PT), attempted to explain why the concept of linear magnetic anomalies, which is one of the main pillars of PT, is erroneous or at least questionable. On the contrary, from the commentator's point of view, it is one of the most important successes of geophysics in the 20th century. The commentary briefly discusses the history of the discovery of polarity reversals of the Earth's magnetic field, which, together with the spreading of the ocean floor, lead to the formation of a system of linear magnetic anomalies. The latter has now become an effective tool for studying geodynamics. Most of V. Gordienko's objections concern the uncertainty of the structure of magnetic anomaly sources, which is caused by the non-uniqueness of the solution of the inverse magnetometry problem. The commentary explains that this uncertainty in no way affects the foundations of PT concepts. In general, everything we know about spreading and subduction (the second main pillar of the PT) is combined into a logical and coherent concept of the PT, all the main elements of which are confirmed by observations.
References
Aryasova, O.V., & Khazan, Y.M. (2016). A new approach to computing steady-state geotherms: The marginal stability condition. Tectonophysics, 693, 32—46. https://doi.org/10.1016/j.tecto.2016.10.014/.
Banerjee, S., & Cox, A. (1971). Rock magnetism. Eos, Transactions American Geophysical Union, 52(5), IUGG 216IUGG 220. https://doi.org/10.1029/eo052i005piu216.
Bea, F., Bortnikov, N., Montero, P., Zinger, T., Sharkov, E., Silantyev, S., Skolotnev, S., Trukhalev, A., & Molina-Palma, J. F. (2020). Zircon xenocryst evidence for crustal recycling at the Mid-Atlantic Ridge. Lithos, 354—355, 105361. https://doi.org/10.1016/j.lithos.2019.105361.
Bea, F., Fershtater, G.B., Montero, P., Whitehouse, M., Levin, V.Y., Scarrow, J.H., Austrheim, H., & Pushkariev, E.V. (2001). Recycling of continental crust into the mantle as revealed by KytlymDunite zircons, Urals Mts. Russia. Terranova, 13, 407—412. https://doi.org/10.1046/j.1365-3121.2001.00364.x.
Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3), 1027. https://doi.org/10.1029/2001GC000252.
Bjerga, A., Stubseid, H.H., Pedersen, L.-E.R., & Pedersen, R.B. (2022).Radiation damage allows identification of truly inherited zircon. Communications Earth Environment, 3, 37. https://doi.org/10.1038/s43247-022-00372-2.
Bortnikov, N.S., Sharkov, E.V., Bogatikov, O.A., Zinger, T.F., Lepekhina, E.N., Antonov, A.V., & Sergeev, S.A. (2008). Finds of young and ancient zircons in gabroids of the Markov Deep,Mid-Atlantic Ridge, 5°54′—5°02.2′ N (Results of SHRIMP-II U-Pb Dating): implication for deep geodynamics of modern oceans. Doklady Earth Sciences, 421, 859—866. https://doi.org/10.1134/S1028334X08050334.
Brunhes, B. (1906). Recherches sur la direction d’aimantation des roches volcaniques. Journal of Physics: Theories and Applications, 5(1), 705―724. https://doi.org/10.1051/jphystap:019060050070500.
Cogné, J.-P., & Humler, E. (2006). Trends and rhythms in global seafloor generation rate. Geochemistry, Geophysics, Geosystems, 7, Q03011. https://doi.org/10.1029/2005GC001148.
Cox, A., Doell, R.R., & Dalrymple, G.B. (1964).Reversals of the Earth’s Magnetic Field. Science, 144(3626), 1537—1543. https://doi.org/10.1126/science.144.3626.153.
Dietz, R. (1961) Continent and Ocean Basin Evolution by Spreading of the Sea Floor. Nature, 190, 854—857. https://doi.org/10.1038/190854a0.
Dixon, T.H., & Moore, J.C. (2007). The Seismogenic Zone of Subduction Thrust Faults. Series: MARGINS Theoretical and Experimental Earth Science Series. NY: Columbia University Press, 692 p. https://doi.org/10.7312/dixo13866.
Fuller, M.D. (1970). Geophysical aspects of paleomagnetism. Critical Reviews in Solid State and Material Sciences, (2), 137―219. https://doi.org/10.1080/10408437008243420.
Gallet, Y. (2021). The dawn of archeomagnetic dating. Comptes Rendus Géoscience, 353(1), 285―296. https://doi.org/10.5802/crgeos.73.
Gee, J.S., & Kent, D.V. (2007). Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescale. Geomagnetism.Treatise on Geophysics, 5. https://doi.org/10.1016/B978-044452748-6.00097-3.
Gordienko, V.V. (2024). On the magnetic field of the oceans. Geofizychnyi Zhurnal, 46(5), 106—117. https://doi.org/10.24028/gj.v46i5.300743.
Graham, J.W. (1949). The stability and significance of magnetism in sedimentary rocks. Journal of Geophysical Research, 54(2), 131―167. https://doi.org/10.1029/JZ054i002p00131.
Graham, J.W. (1953). Changes of ferromagnetic minerals and their bearing on magnetic properties of rocks. Journal of Geophysical Research, 58(2), 243―260. https://doi.org/10.1029/JZ058i 002p00243.
Gubbins, D., & Herrero-Bervera, E. (Eds.). (2007). Encyclopedia of geomagnetism and paleomagnetism. Springer: Dordrecht, The Netherlands. 1054 p. https://link.springer.com/book/ 10.1007/978-1-4020-4423-6.
Harris, P.T. (2012). Seafloor Geomorphology — Coast, Shelf, and Abyss. In P.T. Harris, E.K. Baker (Eds.), Seafloor Geomorphology as Benthic Habitat (pp. 109―155). Elsevier. https://doi.org/10.1016/B978-0-12-385140-6.00006-2.
Hasterok, D. (2013). A heat flow based cooling model for tectonic plates. Earth and Planetary Science Letters, 361, 3443. https://doi.org/10.1016/j.epsl.2012.10.036.
Heirtzler, J.R., Dickson, G.O., Herron, E.M., Pitman, W.C., & Le Pichon, X. (1968). Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. Journal of Geophysical Research, 73(6), 2119—2136. https://doi.org/10.1029/jb073i006p02119.
Holdahl, S.R., & Sauber, J. (1994). Coseismic slip in the 1964 Prince William Sound earthquake: A new geodetic inversion. Pure and Applied Geophysics, 142(1), 55―82. https://doi.org/10.1007/BF00875968.
Humboldt, A. (1797). Über die merkwürdige magnetische Polarität einer Gebirgsgruppe von Serpentinstein. Neues Journal der Physik, Bd. 4, 136―140. Retrieved from https://www.deutschestextarchiv.de/humboldt_polaritaet_1797.
Johnson, H., & Merrill, R. (1978). A direct test of the Vine+Matthews hypothesis. Earth and Planetary Science Letters, 40, 263—269. https://doi.org/10.1016/0012-821X(78)90096-1.
Kodaira, S., No, T., Nakamura, Y., Fujiwara, T., Kaiho, Y., Miura, S., Takahashi, N., Kaneda, Y., & Taira, A. (2012). Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nature Geoscience, 5(9), 646—650. https://doi.org/10.1038/ngeo1547.
Malinverno, A., Quigley, K.W., Staro, A., & Dyment, J. (2020). A Late Cretaceous‐Eocene Geomagnetic Polarity Time Scale (MQSD20) that steadies spreading rates on multiple mid‐ocean ridge flanks. Journal of Geophysical Research: Solid Earth, 125(8), e2020JB02003. https://doi.org/10.1029/2020jb020034.
Matuyama, M. (1929). On the Direction of Magnetisation of Basalt in Japan, Tyôsen and Manchuria. Proceedings of the Imperial Academy, 5(5), 203―205. https://doi.org/10.2183/pjab1912.5.203.
Melnyk, G., Hlavatskyi, D., Poliachenko, I., Bakhmutov, V., Shenderovska, O., & Yakukhno, V. (2022). Current State of Knowledge of the Brunhes Chron Geomagnetic Excursions. 16th Int. Conf. Monit. Geol. Processes and Ecol. Condition of the Environment, Nov 2022 (pp. 1—5). https://doi.org/https://doi.org/10.3997/2214-4609.2022580137.
Mercanton, P.L. (1926). Inversion de l’inclinaison magnètique terrestre aux âges geologiques. Journal of Geophysical Research, 31(4), 187―190. https://doi.org/10.1029/te031i004p 00187.
Mercanton, P.L. (1932). Inversion de l’inclinaison magnètique aux ages geologiques. Nouvelles constatations. C. R. Hebd. Seances Acad. Sci., 188, 1371—1372.
Müller, R.D., Roest, W.R., Royer, J.Y., Gahagan, L.M., & Sclater, J.G. (1997). Digital isochrons of the world’s ocean floor. Journal of Geophysical Research: Solid earth, 102, 3211—3214. https://doi.org/10.1029/96JB01781.
Nagata, T., Uyeda, S., & Akimoto, S. (1952). Self-Reversal of Thermo-Remanent Magnetism of Igneous Rocks. Journal of Geomagnetism and Geoelectricity, 4(1), 22—38. https://doi.org/10. 5636/jgg.4.22.
Néel, L. (1951). L’inversion de l’aimantation permanente des roches. Annales de Géophysique, 7, 90―102.
Parsons, B., & Sclater, J.G. (1977). An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 82(5), 803―827. https://doi.org/10.1029/JB082i005p00803.
Pilot, J., Werner, C.-D., Haubrich, F., & Baumann, N. (1998). Paleozoic and Proterozoic zircons from the Mid-Atlantic Ridge. Nature, 393, 679―679. https://doi.org/10.1038/31452.
Plafker, G. (1972). Alaskan earthquake of 1964 and Chilean earthquake of 1960: Implications for arc tectonics. Journal of Geophysical Research, 77(5), 901―925. https://doi.org/10.1029/JB077i005p00901.
Plafker, G., & Savage, J.C. (1970). Mechanism of the Chilean earthquakes of May 21 and 22, 1960. Geological Society of America Bulletin, 81, 1001—1030. https://doi.org/10.1130/0016-7606(1970)81[1001:MOT-CEO]2.0.CO;2].
Principe, C., & Malfatti, J. (2020). Giuseppe Folgheraiter: the Italian pioneer of archaeomagnetism. Earth Sciences History, 39(2), 305―335. https://doi.org/10.17704/1944-6187-39.2.305.
Raff, A.D., & Mason, R.G. (1961). Magnetic survey off the west coast of North America, 40° N latitude to 52° N latitude. Geological Society of America Bulletin, 72, 1267—1270. https://doi.org/10.1130/0016-7606(1961)72[1267:MSOTWC]2.0.CO;2.
Smith, P.J. (1971). Field reversal or self-reversal? Nature, 229(5284), 378—380. https://doi.org/10.1038/229378a0.
Stern, R.J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 1012. https://doi.org/10. 1029/2001RG000108.
Tauxe, L, Banerjee, S.K., Butler, R.F., & van der Voo, R. (2018). Essentials of Paleomagnetism: Fifth Web Edition. Retrieved from https://earthref.org/MagIC/books/Tauxe/Essentials/.
Tivey, M.A., Johnson, H.P., Fleutelot, C., Hussenoeder, S., Lawrence, R., Waters, C., & Wooding, B. (1998). Direct measurement of magnetic reversal polarity boundaries in a cross-section of oceanic crust. Geophysical Research Letters, 25(19), 3631—3634. https://doi.org/10.1029/98gl02752.
Vaknin, Y., Shaar, R., Lipschits, O. et al. (2022). Reconstructing biblical military campaigns using geomagnetic field data. Proceedings of the National Academy of Sciences, 119. https://doi.org/10.1073/pnas.2209117119.
VanKeken, P.E., & Wilson, C.R. (2023). An introductory review of the thermal structure of subduction zones: I ― motivation and selected examples. Progress in Earth and Planetary Science, 10, 42. https://doi.org/10.1186/s40645-023-00573-z.
Vine, F., & Matthews, D. (1963). Magnetic Anomalies Over Oceanic Ridges. Nature, 199(4897), 947—949. https://doi.org/10.1038/199947a0.
Vine, F.J., & Wilson, J.T. (1965). Magnetic Anomalies over a Young Oceanic Ridge off Vancouver Island. Science, 150(3695), 485―489. https://doi.org/10.1126/science.150.3695.485.
Wilson, M. (2007). Mid-ocean ridges. In Igneous Petrogenesis (pp.101—150). Dordrecht: Springer. https://doi.org/10.1007/978-94-010-9388-0_5.
Wilson, R.L. (1966). Palaeomagnetism and rock magnetism. Earth-Science Reviews, 1(2-3), 175―212. https://doi.org/10.1016/0012-8252 (66)90005-5.
Zheng, Y-F., & Zhao, Z.-F. (2017). Introduction to the structures and processes of subduction zones. Journal of Asian Earth Sciences, 145(Part A), 1—15. https://doi.org/10.1016/j.jseaes.2017.06.034.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Y.M. Khazan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).