Spatio-temporal disturbances of the Earth’s magnetic field along the Struve Geodetic Arc

Authors

  • M.I. Orlyuk Subbotin Institute of Geophysics,National Academy of Sciences of Ukraine, Ukraine
  • A.O. Romenets Subbotin Institute of Geophysics,National Academy of Sciences of Ukraine, Ukraine
  • A.V. Marchenko Subbotin Institute of Geophysics,National Academy of Sciences of Ukraine, Ukraine
  • I.M. Orlyuk Subbotin Institute of Geophysics,National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gj.v47i3.323184

Keywords:

Earth’s internal magnetic field, geomagnetic field variations, Struve Geodetic Arc, ionosphere

Abstract

In 1816-1855, astronomer Friedrich Georg Wilhelm von Struve made the first topographic measurements along a 2822 km long segment of the meridian stretching from northern Norway (70°40′N) to southern Odesa Region (45°19′N) to determine the exact size and shape of the planet. This segment of the meridian is a good testing ground for studying the geomagnetic aspect of solar-terrestrial interactions, as both the main magnetic field of the Earth and the anomalous magnetic field at surface and ionospheric heights change significantly within its boundaries. The article presents the results of a study of the nature of the magnetic storm on May 10-13, 2024, depending on the module and anomalies of the geomagnetic field induction module along the Struve Geodesic Arc. To characterize the Earth's internal magnetic field, digital maps of the induction module and anomalies at heights of 5 and 100 km were developed, and to characterize the magnetic storm, the results of observations of variations in the northern, eastern, and vertical components of the geomagnetic field induction module in 7 magnetic observatories were used. For each observatory, we calculated the induction modulus of the internal magnetic field Bi, the modulus of the main magnetic field (core field) BIGRF, the amplitude and mean value of the geomagnetic field variation, as well as the variation of the parameter ΔD, which reflects the ratio of the anomaly of the geomagnetic field induction modulus to the BIGRF field. According to the results of statistical analysis, the dependence of the amplitude of the external geomagnetic field variations and their average values on the modulus of the main magnetic field of the Earth BIGRF was revealed (R2AõB/BIGPH = 0.96 and R2õB_average/BIGPH = 0.7, respectively). A slightly lower correlation dependence was observed for the Bx component of the geomagnetic field and BIGRF (R2Bx/BIGRF=0.89). The amplitude of variation of the spatio-temporal perturbation of the geomagnetic field δ(ΔD) is also characterized by a high correlation dependence on the BIGRF module (R2Aδ(ΔD)/BIGPH= 0.96) and naturally increases depending on the latitude of the observatory, from 273 nT at the SUA observatory to 2240 nT at the SOD observatory. The revealed regularity is confirmed by a stronger manifestation of the magnetic storm on May 10-13, 2024 and a shift of its maximum disturbances by 4 degrees to the south compared to the magnetic storm of November 29-31, 2003, during which the BIGRF field induction module for the northern part of the STRUVE GEODETIC ARC increased by 830÷930 nT. The connection between the maximum manifestation of the geomagnetic storm and regional magnetic anomalies on the Earth's surface and their superposition at an altitude of 100 km was revealed. The connection between the maximum manifestation of the geomagnetic storm and regional magnetic anomalies on the Earth's surface and their superposition at an altitude of 100 km is revealed. The maximum magnitude of the magnetic disturbance is recorded at the Pello station, which is located in the region of the maximum anomalous magnetic field (more than 90 nT at an altitude of 100 km), in contrast to the Mikkelvik station ‒ in the zone of the minimum geomagnetic field, which is partially confirmed by the variation of ΔB anomalies due to the magnetization of their sources by the variation of the external field. The most probable reason for the connection between the amplitude of external field variations and the modulus of the main magnetic field of the BIGRF and the anomalous magnetic field ΔB is their effect on the formation of ionospheric currents.

References

Alken, P., Thébault, E., Beggan, C.D. et al. (2021). International Geomagnetic Reference Field: the thirteenth generation. Earth, Planets and Space, 73, 49. https://doi.org/10.1186/s40623-020-01288-x.

Brown, W.J., Beggan, C.D., Cox, G.A., & Macmillan, S. (2021). The BGS candidate models for IGRF-13 with a retrospective analysis of IGRF-12 secular variation forecasts. Earth, Planets and Space, 73, 42. https://doi.org/10.1186/s40 623-020-01301-3.

Chambodut, A., Marchaudon, A., Lathuillère, C., Menvielle, M., & Foucault, E. (2015). New hemispheric geomagnetic indices α with 15 min time resolution. Journal of Geophysical Research, 120(11), 9943—9958. https://doi.org/ 10.1002/2015JA021479.

Chornohor, L.F. (2021). Physics of geospace storms. Space Sciences and Technology, 27(1), 3—77. https://doi.org/10.15407/knit2021.01.003 (in Ukrainian).

Chornohor, L.F. (2024). Statistical characteristics of geophysical fields disturbed by weather fronts. Space Science and Technology, 30(3), 80—94. https://doi.org/10.15407/knit2024.03.080 (in Ukrainian).

Cnossen, I., Richmond, A.D., & Wiltberger, M. (2012). Thedependenceofthecoupledmagnetosphere-ionosphere-thermospheresystemontheEarth’smagneticdipole moment. Journal of Geophysical Research: Space Physics, 117, A05302. https://doi.org/10.1029/2012JA017555.

Elvidge, S., & Themens, D.R. (2025). The Probability of the May 2024 Geomagnetic Superstorm. Space Weather, 23, e2024SW004113. https://doi.org/10.1029/2024SW004113.

Enhanced Magnetic Model (EMM). (2017). Retrieved from https://www.ncei.noaa.gov/products/enhanced-magnetic-model.

Grandin, M., Bruus, E., Ledvina, V.E., Partamies, N., Barthelemy, M., Martinis, C., Dayton-Oxland, R., Gallardo-Lacourt, B., Nishimura, Y., Herlingshaw, K., Thomas, N., Karvinen, E., Lach, D., Spijkers, M., & Bergstrand, C. (2024). The geomagnetic superstorm of 10 May 2024. Citizen science observations. EGU sphere. Preprint. https://doi.org/10.5194/egusphere-2024-2174.

Hayakawa, H., Ebihara, Y., Mishev, A., Koldobskiy, S., Kusano, K., Bechet, S., Yashiro, S. et al. (2024). The Solar and Geomagnetic Storms in May 2024: a Flash Data Report. The Astronomical Journal, 979(1). https://doi.org/10.48550/arXiv.2407.07665.

Kärhä, O., Tanskanen, E.I., & Vanhamäki, H. (2023). Large regional variability in geomagnetic storm effects in the auroral zone. Scientifc Reports, 13, 18888. https://doi.org/10.1038/s41598-023-46352-0.

Kärhä, O., Tanskanen, EI, & Vanhamäki, H. (2024). Magnetic ground response of the 2024 Mother’s Day storm in Northern Europe. ESS Open Archive. September 27, 2024. https://doi.org/10.22541/essoar.172745129.97399059/v1.

Kieokaew, R., Haberlel, V., Marchaudon, A., Blelly, P-L., & Chambodut, A. (2024). A no-

vel neural network-based approach to derive a geomagnetic baseline for robust characte-

rization of geomagnetic indices at mid-latitude. arXiv:2410.02311v1 [physics. space-ph].

A preprint. https://doi.org/10.48550/arXiv.2410. 02311.

Kirov, B., Georgieva, K., Asenovski, S., Madjarska, M.S., & Dineva, E.A. (2022). Comparison between the Solar Activity in the 11-Year Sunspot Cycles during the Last Two Centennial Solar Activity Minima. A Comparison of the Geomagnetic Activity during the Same Periods. Proc. of the Fourteenth Workshop «Solar Influences on the Magnetosphere, Ionosphere and Atmosphere» June, 2022 (pp. 87—92). Retrieved from https://spaceclimate.bas.bg/ws-sozopol/pdf/Proceedings2022.pdf.

Korhonen, J.V., Fairhead, J.D., Hamoudi, M., Hemant, K., Lesur, V., Mandea, M., Maus, S., Purucker, M., Ravat, D., Sazonova, T. & Thébault, E. (2007). Magnetic anomaly map of the world, scale 1:50,000,000. Printed by the Geological Survey of Finland. Retrieved from https://ccgm.org/en/product/world-magnetic-anomalies-map-pdf.

Leiko, U.M. (2005). Large-scale magnetic fields of Sun-heliosphere magnetic system. Spec. Iss. «Kinematika and Fizika Nebesnykh Tel», 187—188.

Lesur, V., Gillet, N., Hammer, M.D., & Mandea, M. (2022). Rapid variations of Earth’s core magnetic field. Surveysin Geophysics, 43, 41—69. https://doi.org/10.1007/s10712-021-09662-4.

Liu, P.F., Jiang, Y., Yan, Q., & Hirt, A.M. (2023).The behavior of a lithospheric magnetization and magnetic field model. Earth and Planetary Physics, 7(1), 66—73. http://doi.org/10.26464/epp2023025.

Loewe, C.A., & Prölss, G.W. (1997). Classification and mean behavior of magnetic storms. Journal of Geophysical Research: Space Physics, 102(A7), 14209—14213. http://doi.org/10.1029/96JA04020.

Mandea, M., & Chambodut, A. (2020). Geomagnetic Field Processes and Their Implications for Space Weather. Surveys in Geophysics, 41(6), 1611—1627. http://doi.org/10.1007/s10712-020-09598-1.

Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O., & Morschhauser, A. (2021). The Geomagnetic Kp Index and Derived Indices of Geomagnetic Activity. Space Weather, 19(5), e2020SW002641. http://doi.org/10.1029/2020SW002641.

Menvielle, M., Iyemori, T., Marchaudon, A., & Nosé, M. (2010). Geomagnetic indices. In M. Mandea, M. Korte (Eds.), Geomagnetic observations and models (pp. 183—228). Springer. http://doi.org/10.1007/978-910-481-9858-0_8.

Meyer, B., Saltus, R., & Chulliat, A. (2017). EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). Version 3.NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5H70CVX.

Obridko, V.N., Pipin, V.V., Sokoloff, D., & Shibalova, A.S. (2021). Solar large-scale magnetic field and cycle patterns in solar dynamo. Monthly Notices of the Royal Astronomical Society, 504(4). https://doi.org/10.1093/mnras/stab1062.

Olsen, N., & Stolle, C. (2017). Magnetic Signatures of Ionospheric and Magnetospheric Current Systems During Geomagnetic Quiet Conditions — An Overview. Space Science Review, 206, 5—25. https://doi.org/10.1007/s11214-016-0279-7.

Orlyuk, M.I. (2000). Spatial and spatio-temporal magnetic models of different-rank structures of the continental-type lithosphere. Geofizicheskiy Zhurnal, 22(6), 148—165.

Orlyuk, М.I., & Romenets, А.O. (2022).On the relationship of temporary changes in the Earth’s magnetic field with solar activity 19—24 cycles. Reports of the National Academy of Sciences of Ukraine, (1), 72—78. https://doi.org/10.15407/dopovidi2022.01.072 (in Ukrainian).

Orlyuk, M.I., & Romenets, A.A. (2020). Spatial-temporal change of the geomagnetic field: environmental aspect. Geofizicheskiy Zhurnal, 42(4), 18—38. https://doi.org/10.24028/gzh.0203-3100.v42i4.2020.210670.

Orlyuk, M.I., & Romenets, A.A. (2011). Structure and dynamics of the main magnetic field of the Earth on its surface and in near space. Odessa Astronomical Publications, 24, 124—129 (in Ukrainian).

Orlyuk, M.I., & Romenets, A.O. (2023). The Earth’s magnetic field and the large-scale magnetic field of the Sun: the solar-terrestrial connection. Odessa Astronomical Publications, 36, 172—177. https://doi.org/10.18524/1810-4215.2023.36.290538.

Orlyuk, M., Marchenko, A., & Bakarjieva, M. (2017). 3D magnetic model of the Earth’s crust of the Eastern European Craton with the account of the Earth’s sphericity and its tectonic interpretation. Bulletin of the Kyiv National Taras Shevchenko University. Geology, 79(4), 33—41. https://doi.org/10.17721/1728-2713.79.03.

Orlyuk, M., Marchenko, A., Romenets, A., Bakarzhieva, M., & Orliuk, I. (2024a). Development of geomagnetic field induction module maps for the territory of Ukraine. Geodynamics, 1(36), 74—84. https://doi.org/10.23939/jgd2024.01.074.

Orlyuk, M., Romenets, A., Marchenko, A., & Orliuk, I. (2024b). Earth’s magnetic field along the «Struve Geodetic Arc». Abstracts.BLU 2024 — workshop of the Bulgaria-Latvia-Ukraine nitiative for Space Weather Investigations. June 3—7, 2024. Primorsko, Bulgaria. Retrieved from https://en.venta.lv/initiative-for-space-weather-investigations-2024.

Pulkkinen, A., Amm, O., Viljanen, A., & BEAR Working Group. (2003). Separation of the geomagnetic variation field on the ground into external and internal parts using the spherical elementary current system method. Earth, Planets and Space, 55, 117—129. https://doi.org/10.1186/BF03351739.

Ranjan, A.K., Nailwall, D., Krishna, M.V., Kumar, A., & Sarkhel, S. (2024). Evidence of potential thermospheric overcooling during the May 2024 geomagnetic superstorm. Journal of Geophysical Research: Space Physics, 129(12), e2024JA033148. https://doi.org/10.48550/arXiv.2411.14071.

Rokityansky, I.I., & Tereshyn, A.V. (2024). Induction arrow spatial and temporal variations. Geofizychnyi Zhurnal, 46(6), 3—40. https://doi.org/10.24028/gj.v46i6.307063.

Ryabov, M., Orlyuk, M., Usoskin, I., Sukharev, A., Bezrukovs, V., & Šteinbergs, J. (2024). Project «Study of space weather events during the 25th solar cycle, observed along the «Struve Geodetic Arc» sector (Ukraine, Latvia, Finland)». Abstracts. BLU 2024 — workshop of the Bulgaria-Latvia-Ukraine nitiative for Space Weather Investigations. June 3—7, 2024. Primorsko, Bulgaria. Retrieved from https://en.venta.lv/initiative-for-space-weather-investigations-2024.

Ryabov, M., Sukharev, A., Orlyuk, M., Sobitnyak, L., & Romenets, A. (2019). Comparative analysis of geomagnetic disturbances in the zone of the Odessa magnetic anomaly under different states of solar activity in the 24th cycle. Radiophysics and Radioastronomy, 24(1), 68—79. https://doi.org/10.15407/rpra24.01.068 (in Russian).

Sukharev, A.L., Sobitnyak, L.I., Ryabov, M.I., Orlyuk, M.I., Orliuk, I.M., & Romenets, A.A. (2014). Earth’s magnetic field dynamics: space weather and solar cycle effect exhibiting. Odessa Astronomical Publications, 27(2), 98—100.

Sukharev, A., Orlyuk, M., Ryabov, M., Sobitniak, L., Bezrukovs, V., Panishko, S., & Romenets, A. (2022). Results of comparison of fast variations of geomagnetic field and ionospheric scintillations of 3C 144 radio source in the area of Odessa geomagnetic anomaly. Astronomical and Astrophysical Transactions, 33(1), 67—88. https://doi.org/10.17184/eac.6481.

Usoskin, I., Miyake, F., Baroni, M., Brehm, N., Dalla, N., Hayakawa, H., Hudson, H., Timothy, Jull, A.J., Knipp, D., Koldobskiy, S., Maehara, H., Mekhaldi, F., Notsu, Yu., Poluianov, S., Rozanov, E., Shapiro, A., Spiegl, T., Sukhodolov, T., Uusitalo, J., & Wacker, L. (2023). Extreme Solar Events: Setting up a Paradigm. Space Science Reviews, 219, 73. https://doi.org/10.1007/s11214-023-01018-1.

Yamazaki, V, Matzka, J., Stolle, C., Kervalishvili, G., Rauberg, J., Bronkalla, O., Morschhauser, A., Bruinsma, S., Shprits, Y., & Jackson, D.R. (2022). Geomagnetic activity index hpo. Geophysical Research Letters, 49(10), e2022GL098860. https://doi.org/10.1029/2022GL098860.

Downloads

Published

2025-06-09

How to Cite

Orlyuk, M., Romenets, A., Marchenko, A., & Orlyuk, I. (2025). Spatio-temporal disturbances of the Earth’s magnetic field along the Struve Geodetic Arc. Geofizicheskiy Zhurnal, 47(3). https://doi.org/10.24028/gj.v47i3.323184

Issue

Section

Articles