Velocity sections of the upper mantle under the oceans
DOI:
https://doi.org/10.24028/gzh.0203-3100.v38i6.2016.91964Keywords:
oceans, upper mantle, velocity models, deep-seated processesAbstract
We constructed the models of the distribution of longitudinal seismic waves velocities for the upper mantle oceanic regions: mid-ocean ridges (MOR), basins, trenches, island arcs and coastal ridges, back-arc troughs (BAT). They are in line with the schemes of advection-polymorphic deepseated processes in tectonosphere. Under the island arcs and coastal ridges models meet the alpine geosyncline supplemented with recent activization. Under the MOR and BAT the models coincide. They correspond to the scheme of recent heat and mass transfer for rifting which on the mafic crust with continental thickness leads to oceanization. The basin model shows the result of smoothing of thermal anomalies under the MOR or BAT in about 50 100 million years. The trench model corresponds to the result of lateral warming-up of upper layers of the mantle of the inactive blocks from the island arc and basinReferences
Boldyrev S. A., 1986. Mantle heterogeneity of active margins of the oceans. In: Structure and dynamics of the transition zones from a continent to an ocean. Moscow: Nauka, P. 43—50 (in Russian)
Buryanov V. B., Gordienko V. V., Zavgorodnyaya O. V., Kulik S. N., Logvinov I. M., 1985. Geophysical model of Ukrainian tectonosphere. Kiev: Naukova Dumka, 212 p. (in Russian)
Geochemistry of deep volcanic rocks and xenoliths, 1980. Ed. V. S. Sobolev. Moscow: Nauka, 332 p. (in Russian)
Gontovaya L. I., Gordienko V. V., 2006. Deep processes and geophysical models of the mantle of Eastern Kamchatka and Kronotskii Bay. Geologiya i poleznye iskopayemye Mirovogo okeana (2), 107—121 (in Russian)
Gordienko V. V., 2010. On the nature of anomalies velocity of longitudinal seismic waves in the upper mantle. Geofizicheskiy zhurnal 32(3), 43—63 (in Russian)
Gordienko V. V., 2012. Processes in the Earth tectonosphere (advection-polymorphic hypothesis). Saarbrücken: LAP, 256 p. (in Russian)
Gordienko V. V., Gordienko L. Ya., 2013a. On the PT-conditions in the mantle magma chambers beneath the Atlantic Ocean. Geologiya i poleznye iskopayemye Mirovogo okeana (4), 63—78 (in Russian)
Gordienko V. V., Gordienko L. Ya., 2013b. On the PT-conditions in the mantle magma chambers beneath the Pacific Ocean. Geologiya i poleznye iskopayemye Mirovogo okeana (2), 47—63 (in Russian)
Moroz Yu. F., 2009. Deep conductivity of volcanic zones of Kamchatka. In: Electromagnetic study of the Earth. Moscow: Publ. House of the IPE RAS, P.157 (in Russian)
Nazarova Z. A., Droznina S. Ya., Senyukov S. L., Droznin D. V., 2010. Determination of the earthquakes centers’ position in Kamchatka region. In: Problems of complex geophysical monitoring the Russian Far East. Petropavlovsk-Kamchatski: Publ. House of the FEB RAS, P. 363—366 (in Russian)
Nizkous I. V., Kissling E., Sanina I. A., Gontovaya L. I., 2006. Velocity properties of the transition zone’s lithosphere in the Kamchatka ocean-continent region according to seismic tomography. Fizika Zemli (4), 18—29 (in Russian)
Report "Development of scientific bases for complex seismic monitoring system in the Kuril-Kamchatka region", 2008. Head L. I. Lobkovskiy Moscow: Publ. House of the IO RAS, 95 p. (in Russian)
Pavlenkova N. I., Pogrebitskiy Yu. E., Romanyuk T. V., 1993. Seismic-dencity model of South Atlantic crust and upper mantle along Angol-Brasil geotravers. Fizika Zemli (10), 27—38 (in Russian)
Petrological province Pacific, 1996. Ed. I. N. Govorov. Moscow: Nauka, 439 p. (in Russian)
Ringwood A., 1981. Composition and petrology of the Earth's mantle. Moscow: Nedra, 583 p. (in Russian)
Tarakanov R. Z., 2006. Velocity models and P-wave travel time curves for the Far East region. Vestnik DVO RAN (1), 81—95 (in Russian)
Tectonosphere of the Asia Pacific margin, 1992. Ed. K. F. Sergeev. Vladivostok: Publ. House of the FEB RAS, 238 p. (in Russian)
Udintsev G. B., 1987. Relief and structure of the ocean floor. Moscow: Nauka, 340 p. (in Russian)
Frolova T. I., Perchuk L. L., Burikova I. A., 1989. Magmatism and crustal transformation of active margins. Moscow: Nedra, 260 p. (in Russian)
Erlikh E. N., 2011. Essays of Geology island arcs. google.com/site/geotermiakuril (in Russian)
Aoki H., Tada T., Sasaki Y., Ooida T., Muramatsu Y., Shimamura H., Furuya I., 1972. Crustal structure in the profile across central Japan as derived from explosion seismic observation. J. Phys. Earth 20, 197—223
Boyd F., 1989. Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96(1/2), 16—26
Brown J., Shankland T., 1981. Thermodynamic properties in the earth as determined from seismic profiles. Geophys. J. Roy. Astron. Soc. (66), 579—596
Chu R., Schmandt B., Helmberger V., 2012. Juan de Fuca subduction zone from a mixture of tomography and wave form modeling. J. Geophys. Res. 117, B03304
Feng M., Lee S., Assumpcao M., 2007. Upper mantle structure of South America from joint inversion of waveforms and fundamental mode group velocities of Rayleigh waves. J. Geophys. Res. 112, B04312. doi:10.1029/2006JB004449
Flanagan M., Shearer P., 1999. A map of topography on the 410-km discontinuity from PP precursors. Geophys. Res. Lett. 26(5), 549—552
Fukao Y., 1977. Upper mantle P-structure on the ocean side of the Japan-Kurile arc. Geophys. J. Roy. Astron. Soc. 50, 621—642
Gordienko V., 2016. Deep-seated processes in the tectonosphere of geosynclines. NCGT Jounal 1, 6—31
Gordienko V., 2015. Essential points of the advection-polymorphism hypothesis. NCGT Jounal 3(2), 115—136
Gudmundsson O., Sambridge M., 1998. A regionalized upper mantle (RUM) seismic model. J. Geophys. Res. 102, B4, 7121—7126
Harley S., 1989. The origin of granulites: a metamorphic perspective. Geol. Mag. 126(3), 215—247
Helffrich G., 2000. Topography of the transition zone seismic discontinuities. Rev. Geophys. 38(1), 141—158
Irifune T., 1987. An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the construction of the mantle. Phys. Earth Planet. Int. 45, 324—336
Iwasaki T., Levin V., Nikulin A., Iidaka T., 2013. Constraints on the Moho in Japan and Kamchatka. Tectonophysics 609, 184—201
Jiang G., Zhao D., Zhang G., 2009. Seismic tomography of the Pacific slab edge under Kamchatka. Tectonophysics 465, 190—203
Karato S.-I., 1993. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20, 1623—1626
Kennett B., Engdahl E., Buland R., 1995. Constraints on seismic velocities in the Earth from travel times. Geophys J. Int. 122, 108—124
Pavlenkova G. A., Pavlenkova N. I., 2006. Upper mantle structure of Northern Eurasia from peaсefull nuclear explosion data. Tectonophysics 416, 33—52
Romanowicz B., 2003. Global mantle tomography: progress status in the past 10 years. Ann. Rev. Earth Planet Sci. 31, 303—328
Usami T., Mikumo T., Shima E., Tamaki I., Asano S., Asada T., Matsuzawa T., 1958. Crustal structure in northern Kwanto district by explosion-seismic observations. Part II. Models of crustal structure. Bull. Earthq. Res. Inst. 36, 349—357
Yamasaki A., Hirahara K., 1996. The upper mantle P-wave velocity structure beneath the northern Japan Arc. J. Phys. Earth 44(6), 713—728
Yoshii T., Sasaki T., Tada T., Okada H., Asano S., Muramatu I., Hashizume M., Moriya T., 1974. The third Kurayoshi explosion and crustal structure in the western part of Japan. J. Phys. Earth 22, 109—121
Walck M., 1985. The upper mantle beneath the north-east Pacific rim: a comparison with the Gulf of California. Geophys. J. Roy. Astron. Soc. 81, 243—276
Zhao Z., Kubota R., Suzuki F., Iizuka S., 1997. Crustal structure in the Southern Kanto-Tokai region derived from tomographic method for seismic explosion survey. J. Phys. Earth 45, 433—453
Zhao M., Langston C., Nyblade A., Owens T., 1999. Upper mantle velocity structure beneath southern Africa from modelling regional seismic data. J. Geophys. Res. 104, B3, 4783—4794
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).