Application of neural networks modeling for interpretation of acoustic logging traces
DOI:
https://doi.org/10.24028/gzh.0203-3100.v37i5.2015.111160Ключові слова:
neural network modelling, acoustic logging, wave arrival time, adaptive threshold level, longitudinal and transversal wavesАнотація
The neural networks are proposed for application as a method for automatic P- and S-waves onset time-picking on sonic logging. The neural network models of acoustic emission preceding phase onset are trained and used to discriminate noise and desired signal, the last one being packets of longitudinal and transversal waves. The given algorithm is easily adapted to existing systems and is able to provide both processing of logging tracks in online regime and high productivity of archive materials interpretation.
Посилання
Lazarenko M. A., Gerasimenko O. O., Ostapchuk N. N., 2006. Detection of the seismic signal using a neural network controlled. Bulletin of Kiev. Univ. Geology (is. 38/39), 47—52 (in Ukrainian).
Chen Z., Stewart R., 2005. A multi-window algorithm for real-time automatic detection and picking of P-phases of microseismic events. Conference Abstracts, CREWES, Univ. of Calgary, Canada. Ð. 14.
Chauvin Y., Rumelhart D. E., 1995. Back Propagation: Theory, Architectures and Applications. Lawrence Erlbaum Associates, 564 ð.
Guerra V., Tapia R. A., 1974. A local procedure for error detection and data smoothing. MRC Technical Summary Report 1452, Mathematics Research Center, University of Wisconsin, Madison.
Wong J., Han L., Stewart R. R., Bancro J. C., 2009. Geophysical well logs from a shallow test well and automatic time-picking on full-waveform sonic logs. CSEG Recorder 34 (4), 20—29.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Геофізичний журнал
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
1. Автори зберігають за собою авторські права на роботу і передають журналу право першої публікації разом з роботою, одночасно ліцензуючи її на умовах Creative Commons Attribution License, яка дозволяє іншим поширювати дану роботу з обов'язковим зазначенням авторства даної роботи і посиланням на оригінальну публікацію в цьому журналі .
2. Автори зберігають право укладати окремі, додаткові контрактні угоди на не ексклюзивне поширення версії роботи, опублікованої цим журналом (наприклад, розмістити її в університетському сховищі або опублікувати її в книзі), з посиланням на оригінальну публікацію в цьому журналі.
3. Авторам дозволяється розміщувати їх роботу в мережі Інтернет (наприклад, в університетському сховище або на їх персональному веб-сайті) до і під час процесу розгляду її даними журналом, так як це може привести до продуктивної обговоренню, а також до більшої кількості посилань на дану опубліковану роботу (Дивись The Effect of Open Access).