Від нової геологічної парадигми до завдань регіональних геолого-геофізичних досліджень

Автор(и)

  • A. Lukin Інститут геологічних наук НАН України, Український державний геологорозвідувальний інститут, Україна
  • V. Shestopalov Інститут геологічних наук НАН України, Науково-інженерний центр радіогідрогеоекологічних полігонних досліджень НАН України, Україна

DOI:

https://doi.org/10.24028/gzh.0203-3100.v40i4.2018.140610

Ключові слова:

plume, deep Earth degassing, degassing pipe, cross-formational system, activation zone, ecological consequences of deep degassing

Анотація

Аналіз новітніх наукових досягнень у різних напрямах геолого-геофізичних до- сліджень показав, що вивчення процесів глибинної дегазації Землі від земного ядра до її поверхні і атмосфери набуває статусу магістрального напряму наук про Землю. Виявлення енергетично найактивніших і найпотужніших субвертикальних висхідних крізьгеосферних і крізьформаційних процесів, які локалізуються у вигляді ієрархії труб дегазації різних розмірів, від базового плюму до елементарного приповерх- невого каналу, має важливе фундаментальне і прикладне значення. Існування цієї системи забезпечується послідовними екзотермічними перетвореннями елементар- них відновлюваних газів до окисних речовин, які внаслідок таких хімічних реакцій послідовно отримують нові порції енергії, достатньої для поступового висхідного прориву глибинної речовини мантії і кори. Трактування мантійних плюмів як базових мегатруб дегазації дає змогу поєднати основні аспекти ендогенного рудоутворен- ня, нафтидогенезу в літосфері та екологічних процесів у земній корі і атмосфері. Структурно-геологічною основою труб дегазації є крізьформаційні системи. Вони

— основні концентратори висхідної міграції і накопичення нафтидів у багатоповер- хових родовищах. Усе чіткіше прослідковується зв’язок діапіризму з похідними мега- плюмів — трубами дегазації. Енергетика дегазації — головний чинник діапіризму. На підставі аналізу геофізичних та інших ознак сучасної активізації вказаного процесу визначено місця можливої аномальної дегазації на території України. Припускають можливість отримання у деяких з них природного водню як природної корисної копалини. Розглянуто екологічні ризики глибинної дегазації Землі, зокрема катастро- фічної через дію супервулканів, і можливі напрями протидії цим ризикам за умови цілеспрямованих зусиль передової частини людства. Назріла необхідність перегляду стратегії і методології подальшого розвитку геолого-геофізичних досліджень у цілому і таких важливих прикладних напрямів, як, зокрема, комплексна геологічна зйомка, картування, пошуки деяких корисних копалин, геоекологія.

Посилання

Adushkin, V. V. (2004). Cavitation mechanism of nano- and microparticles formation in the interior of the Earth. Doklady RAN, 399(1), 107—109 (in Russian).

Antsiferov, A. V., Golubev, A. A., Kanin, V. A., Tirkel, M. G., Zadara, G. Z, Uziyuk, V. I., Antsiferov, V. A. & Suyarko, V. G. (2009). Gas content and methane resources of coal basins in Ukraine. Donetsk: Weber Publ. House (in Russian).

Artyushkov, E. V. (2000). Rapid subsidence and uplift of the Earth's crust in the continents with the loss of strength of lithosphere layer as a result of mantle plumes ascending to the base of the lithosphere. In Global problems of geodynamics (pp. 11—35). Moscow: GEOS (in Russian).

Barkovsky, E. V. (2004). Conclusion on the nature of so-called “explosion” in the town of Sasovo, Ryazan region on April 12, 1991. Russkaya Mysl (1-12), 10—35 (in Russian).

Belov, S. V. (2011). Hydrogen degassing of the planet: analysis of volcanic structures. Oko planety (in Russian). https://oko-planet.su/phenomen/phenomenscience/93242-vodorodnaya-degazaciya-planety-analiz-vulkanicheskih-struktur.html.

Bluman, B. A. (2001). About three NON in geological processes — non-linearity, non-reversibility, non-equilibrium. Otechestvennaya geologiya (8), 64—65 (in Russian).

Bolshakov, Yu. Ya. (1989). Capillary-shielded oil and gas fields. Novosibirsk: Nauka (in Russian).

Vadkovsky, V. N. (1996). Nature and mechanism of seismic “nails”. Abstracts of the conference “Lomonosov Readings” (pp. 63—64). Moscow: MSU Publ. House (in Russian).

Vadkovsky, V. N. (2012). Subvertical congestions of the earthquake hypocenters — seismic “nails”. Vestnik ONZ RAN, 4, NZ1001. doi:10.2205/2012NZ000110 (in Russian).

Vasiliev, V. G. (2006). The Chernobyl NPP Catastrophe. Approximation to the truth. Moscow: Belye Alvy Publ. House. Series “National Security”, Is. 3 (in Russian).

Voitov G.I., 1971. Chemical composition of gases of the Krivoy Rog basin. Geokhimiya (11), 1324-1331 (in Russian).

Belousova, V. V. (Ed.). (1974). East African rift system. Moscow: Nauka (in Russian).

Galimov, E. M. (1973). Carbon isotopes in oil-and-gas geology. Moscow: Nedra (in Russian).

Gevorkyan, S. G. (2011). Great Minoan eruption of Santorin volcano and its consequences. Prostranstvo i vremya, (2), 138—144 (in Russian).

Paffengolz, K. N. (Ed.). (1978). Geological glossary (Vols. 1-2). Moscow: Nedra (in Russian).

Gintov, О. B. (2014). Scheme of periodization of faulting stages in the Earth's crust of the Ukrainian Shield — new data and consequences. Geophizicheskiy zhurnal, 36(1), 3—18 (in Russian).

Gordienko, V. V. (2001). The nature of crustal and mantle conductors. Geofizicheskiy zhurnal, 23(1), 29—39 (in Russian).

Gordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., Kovachikova, S., Logvinov, I. М. & Tarasov, V. N. (2011). Evolution of the tectonosphere of the Volyn-Podolsk plate. Geofizicheskiy zhurnal, 33(6), 29—49 (in Russian).

Gordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., Kovachikova, S., Logvinov, I. М., Tarasov, V. N. & Usenko, O. V. (2005). Ukrainian shield (geophysics, deep processes). Kiev: Korvin-press (in Russian).

Gordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., Logvinov, I. M., Tarasov, V. N. & Usenko, O. V. (2004). Geothermal atlas of Ukraine. Kiev: IGP NASU Publ. House (in Russian).

Gordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., Logvinov, I. M. & Shkurenko, E. I. (2007). Recent results of geothermal and geoelectric studies of the Dnieper zone of modern activation. Geofizicheskiy zhurnal, 29(1), 115—121 (in Russian).

Gordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V. & Usenko, O. V. (2002). Thermal field of the territory of Ukraine. Кyiv: Znannya Ukrainy (in Russian).

Gordienko, V. V. & Usenko, O. V. (2003). Deep processes in the tectonosphere of Ukraine. Kiev: IGP NASU (in Russian).

Guliev, I. S. (2012). Sub-vertical geological bodies: formation mechanisms and hydrocarbon potential. In New ideas in oil and gas geology and geochemistry (pp. 153—155). Moscow: GEOS (in Russian).

Gufeld, I. L. (2012). Geological consequences of amorphization of the lithosphere and upper mantle structures, caused by hydrogen degassing. Geodinamika i tektonofizika, 3(4), 417—435 (in Russian).

Gufeld, I. L. (2007). Seismic process. Physico-chemical aspects. Korolev: TsNIIMash (in Russian).

Gufeld, I. L., Gusev, G. A. & Matveeva, M. I. (1998). Metastability of the lithosphere as a manifestation of the ascending diffusion of light gases. Doklady RAN, 362(5), 677—680 (in Russian).

Gufeld, I. L., Soubisevich, A. D. (2006). Pulse regional degassing of the Earth, which stimulates formation of strong earthquakes foci. Abstracts of the International Conference: “Degassing of the Earth: geofluids, oil and gas, parageneses in the system of fossil fuels”, May 30—June 1, 2006 (pp. 92—94). Moscow: GEOS (in Russian).

Dobretsov, N. L. (1997). Mantle superplumes as the cause of the main geological periodicity and global rearrangements. Doklady RAN, 357(6), 797—800 (in Russian).

Dobretsov, N. L., Kirdyashkin, A. G., Kurdyashkin, A. A. (2003). Deep-level geodynamics. Novosibirsk: SB RAS Publ. House. Affiliate of “GEO” (in Russian).

Entin, V. A. (2005). Geophysical basis for the Tectonic map of Ukraine of scale 1: 1000000. Geofizicheskiy zhurnal, 27(1), 74—84 (in Russian).

Ivanov, V. V., Guliyev, I. S. (2002). Mass exchange, hydrocarbon formation and phase transitions in sedimentary basins. Baku: Nafta Press (in Russian).

Burde, A. I., Maimin, Yu. S., Starchenko, V. V. et al. (Compilers). (1995). Instruction on compilation and preparation for publication of the State Geological Map of the Russian Federation of scale 1: 200000. Leningrad: VSEGEI Publ. House (in Russian).

Bratslavsky, P. F., Velikanov, V. Ya., Vogrin, B. D. et al. (Compilers). (1999). Regulatory guidance document. Organization and implementation of geological study of previously mapped areas of scale 1:200000, compilation and preparation for publication of the state geological map of Ukraine of scale 1:200000. Kiev: Geolkom Ukrainy (in Ukrainian).

Kirdyashkin, A. A., Dobretsov, N. L., Kirdyashkin, A. G., (2008). Heat and mass transfer in a thermochemical plume under an oceanic plate far from the mid-ocean ridge axis. Fizika Zemli, (6), 17—30. DOI: 10.1134/S1069351308060025 (in Russian).

Kissin, I. G. (2009). Fluids in the earth's crust. Geophysical and tectonic aspects. Moscow: Nauka (in Russian).

Kityk, V. I. (1970). Salt tectonics of the Dnieper-Donets Depression. Kiev: Naukova Dumka (in Russian).

Kityk, V. I., Belous, I. R., Dolishny, B. V., Rodina, E. K., Slivko, E. P., Florinskaya, V. N. (1981). Mercury content in salt domes of the Dnieper-Donets depression. Kiev: Naukova Dumka (in Russian).

Klymchouk, O. B. (2017). Development of the theory of hypogene karstogenesis: scientific and practical applications. Visnyk Natsionalnoi Akademii Nauk Ukrainy, (12), 9—28 (in Ukrainian).

Komarov, P. V. & Thomson, I. N., (2007). Plums and their influence on formation of precious metals mineralization in carbonaceous rocks. Doklady RAN, 415(6), 779—781 (in Russian).

Kopnichev, Yu. F., (1997). Variations of the transverse wave absorption field prior to the strong earthquakes of the Northern Tien Shan. Doklady RAN, 356(4), 528—532 (in Russian).

Korchin, V. A. & Burtnyi, P. A. (2011). Thermobaric petrophysical modeling of the lithosphere for the parts of the Earth's crust of the Ukrainian Shield with zones of low seismic velocities. Geofizicheskiy zhurnal, 33(6) 82—95. doi: https://doi.org/10.24028/gzh.0203-3100.v33i6.2011.116795 (in Russian).

Kropotkin, P. N. (1986). Degassing of the Earth and the genesis of hydrocarbons. Zhurnal Vsesoyuznogo khimicheskogo obshchestva im. D. I. Mendeleeva, 31(5), 540—547(in Russian).

Kuznetsov, O. L. (1981). Nonlinear geophysics. In Problems of nonlinear geophysics (pp. 5—20). Moscow: Publ. Department of Scientific and Technical Information All-Union Scientific Research Institute of Nuclear Geophysics and Geochemistry (in Russian).

Kuprienko, P. Ya., Makarenko, I. V., Starostenko, V. I., Legostoyeva, O. V. & Savchenko A. S. (2010). Three-dimensional density model of the Earth’s crust and upper mantle of the Dnieper-Donets basin and Donbas. Geofizicheskiy zhurnal, 32(6), 175—214. doi: https://doi.org/10.24028/gzh.0203-3100.v32i6.2010.117461 (in Russian).

Kurlov, M. S. (2003). Hydrogeological essay, gasometry, recent temperature regime. In Krivyi Rig ultradeep borehole NG-8. (pp. 301—318). Dnipropetrovsk: KP “Pivdenukrheolohiya“ (in Ukrainian).

Larin, V. N., (2005). Our Earth (origin, composition, structure and evolution of primordially hydridic Earth. Moscow: Agar Publ. House (in Russian).

Larin, V. N., (1973). Planet-chemical consequences of modern cosmogony. Doklady AS USSR 210(5), 1193—1196 (in Russian).

Larin, N. V., Larin, V. N., & Gorbatikov, A. V. (2010). Ring structures caused by deep hydrogen flows. Degassing of the Earth: geotectonics, geodynamics, geofluids; oil and gas; hydrocarbons and life. Materials of the All-Russian Conference with international participation, dedicated to the centenary of the birth of Acad. P. N. Kropotkin (pp. 284—287). Moscow: GEOS (in Russian).

Leonov, M. G., Kolodyazhny, S. Yu., Kunina, N. M., (2000). Vertical accretion of the earth's crust - structural-substantial aspect. Moscow: GEOS, 202 p (in Russian)

Letnikov, F. A. (2000). Deep Earth Fluids. Vestnik RFFI. http://www.csr.spbu.ru/pub/RFBR_publications/articles/geosciences/2000/glubinny%27e_flyuidy%27_Zemli_00_geo.pdf (in Russian).

Letnikov, F. A. (2001). Ultradeep fluid systems of the Earth and problems of ore formation. Geologiya rudnykh mestorozhdeniy, 43(4), 291—307 (in Russian).

Letnikov, F. A. (1992). Ultradeep fluid systems of the Earth. Novosibirsk: Nauka (in Russian).

Lukin, A. E. (1971). Post-sedimentation alteration of saliferous deposits. In Halogen formations of Ukraine and associated minerals (pp. 62—64). Kiev: Naukova Dumka (in Russian).

Lukin, A. E. (1989). Genetic types of secondary transformations and oil-and-gas accumulation in aulacogenic basins. Academy of Sciences of Ukraine. Institute of Geological Sciences, Kiev. Preprint (in Russian).

Lukin, A. E. (2000). Injections of deep hydrocarbon-polymineral substance in deep-lying rocks of oil-and- gas basins: nature, applied and epistemological significance. Heolohichnyy zhurnal, (2), 7—21 (in Russian).

Lukin, A. E. (1997). Lithogeodynamic factors of oil-and-gas accumulation in aulacogenic basins. Kiev: Naukova Dumka (in Russian).

Lukin, A. E. (2013). Mineral spherules — indicators a specific fluid regime of ore formation and naftidogenesis. Geofizicheskiy zhurnal, 35(6) 10—53. doi: https://doi.org/10.24028/gzh.0203-3100.v35i6.2013.116450 (in Russian).

Lukin, A. E. (2011). On the nature and prospects of gas presence in low-permeable rocks of the Earth sedimentary cover. Doklady NANU, (3) 114—123 (in Russian).

Lukin, A. E. (1999). On the origin of oil and gas (geosynergic concept of natural hydrocarbon-generating systems). Heolohichnyy zhurnal, (1), 30—42 (in Russian).

Lukin, A. E. (1992). On the commercially gas-containing travertine of Paleozoic. Doklady RAN, 326(1), 143—148 (in Russian).

Lukin, A. E. (2004). On the cross-formational fluid-conducting systems in the oil-and-gas basins. Heolohichnyy zhurnal, (3), 34—45 (in Russian).

Lukin, A. E. (2012). Nature of deep-lying oil and gas reservoirs. Abstracts of the 1st International Conference “Hydrocarbon potential of the great depths: energy resources of the future — reality and forecast”, 12—14 June 2012 (pp. 26—28). Baku (in Russian).

Lukin, A. E. (2004). Problems of naphthidosynergetics — nonlinear geology of oil and gas. Heolohichnyy zhurnal, (1), 21—39 (in Russian).

Lukin, A. E., (2009). Native-metal micro- and nano- inclusions in the formations of oil-and-gas basins - as tracers of super-deep fluids. Geofizicheskiy zhurnal, 31(2), 61—92 (in Russian).

Lukin, A. E., (2006). Native metals and carbides — indicators of composition of deep geospheres. Heolohichnyy zhurnal, (4), 17—46 (in Russian).

Lukin, A. E., (2015). The system “superplume — deep-lying segments of oil and gas basins” — inexhaustible source of hydrocarbons. Heolohichnyy zhurnal, (2), 7—20 (in Russian).

Lukin, A. E. (2014). Hydrocarbon potential of great depths and prospects of its mastering in Ukraine. Geofizicheskiy zhurnal, 36(4), 3—23. doi: https://doi.org/10.24028/gzh.0203-3100.v36i4.2014.112455 (in Russian).

Lukin, A. E. & Garipov, O. M. (1994). Lithogenesis and oil-and-gas content of the Jurassic sediments in the Mid-latitude Priobye. Litologiya i poleznye iskopaemye, (4), 32—42 (in Russian).

Lukin, A. E. & Goncharov, G. G. (2015). Plosive breccia — lithogeodynamic indicator of the initial stage of salt diapirism. Heolohichnyy zhurnal, (4), 7—25 (in Russian).

Lukin, A. E. & Larin, S. B. (2003). Genetic types of rocks fracturing for deep oil-and-gas complexes. Heolohichnyy zhurnal, (3), 9—25 (in Russian).

Lukin, A. E., Lugovaya, I. P. & Zagnitko, V. N. (1989). The nature of paleogeothermal criteria of oil-and-gas potential. Izvestiya AN SSSR. Ser. Geol., (4), 113—125 (in Russian).

Lukin, A. E. & Shpak, P. F. (1991). Deep factors of formation of the Pripyat-Dnieper-Donets system of oil-and -gas basins. Heolohichnyy zhurnal, (5), 27—38 (in Russian).

Lukin, A. E., Shumlyansky, V. A., Dyachenko, G. I. & Ivantishina, O. M. (1994). Problems of cold degassing of the Earth. Academy of Sciences of Ukraine. Institute of Geological Sciences. Kiev. Preprint (in Russian).

Lukin, A. E. & Yuzlenko, A. T. (2011). Discovery of hypogene-metasomatic gas collectors in crystalline rocks of the Ukrainian Shield. Dopovidi NAN Ukrayiny, (7), 106—113 (in Russian).

Nezhdanov, A. A. & Smirnov, A. S. (2014). Surface manifestations of the fluid-dynamic processes of the Earth. Workshop on the Yamal funnel. Moscow: Institute of Geoecology RAS. https://www.youtube.com (in Russian).

Ninkovich, D. & Hazen, B. (1969). Tephra of the Santorin Island. In Geology and geophysics of the sea floor (pp. 333—371). Moscow: Mir (in Russian).

Novgorodova, M. I. (1983). Native metals in hydrothermal ores. Moscow: Nauka, 287 p. (in Russian).

Nusipov, E. N., Ospanov, A. B., & Shatsilov, V. I. (2005). High-speed models of the lithosphere of high Asia in the system of geotraverses. Vestnik NYATS RK, (2), 109—121 (in Russian).

Orovetsky, Yu. P., Kobolev V. P. (2006). Hot belts of the Earth. Kiev: Naukova dumka (in Russian).

Krasnyy, L. I., Petrov, O. V. & Blumans, B. A. (Eds.). (2004). Planet Earth. Vol “Tectonics and geodynamics”. St. Petersburg: VSEGEI Publ. House (in Russian).

Pashkevich, I. K. & Bakarzhieva, M. I. (2016). Mafic dykes of Ingul megablock (Ukrainian Shield): relationship of surface and deep structures of the lithosphere, fault tectonics and geodynamics. Geofizicheskiy zhurnal, 38(5), 49—66. doi: https://doi.org/10.24028/gzh.0203-3100.v38i5.2016.107821 (in Russian).

Pospelov, G. L. (1963). Geological prerequisites to physics of ore-controlling fluid conductors. Geologiya i geofizika, (3), 18—38 (in Russian).

Pospelov, G. L. (1973). Paradoxes, geological and geophysical nature and mechanisms of metasomatism. Novosibirsk: Nauka (in Russian).

Portnov, A. V. (2010).Volcanoes — natural hydrogen fields. Promyshlennye vedomosti, (10-12) (in Russian).

Priester, B. S., Klyushnikov, A. A., Shestopalov, V. M. & Kukhar, V. P. (2013). Problems of nuclear energy safety: Lessons of Chernobyl. Chernobyl: Publ. Institute for Safety Problems of NPP NAS Ukraine (in Russian).

Pushcharovsky, Yu. M. (1993). Nonlinear geodynamics (credo of the author). Geotektonika, (1), 3—6 (in Russian).

Pushcharovsky, Yu. M. (2006). A new-generation of the tectonic-geodynamic model of the Earth: Review of the problem. Geotektonika, (3), 3—8. doi: 10.1134/S0016852106030010 (in Russian).

Pushcharovsky, Yu. M. (1998). Seismotomography, tectonics and deep geodynamics. Doklady RAN, 360(4), 518—522 (in Russian).

Ryabchikov, I. D. (2003). High content of nickel in the mantle magmas as evidence of substance migration from the Earth's core. Doklady RAN, 389(5), 677—680 (in Russian).

Chernikov, K. A. (Ed.). (1988). Glossary of oil and gas geology. Leningrad: Nedra (in Russian).

Starostenko, V. I., Gintov, O. B., Pashkevich, I. K., Burakhovich, T. K., Kulik, S. N., Kuprienko, P. Ya., Kutas, R. I., Makarenko, I. B., Orlyuk, M. I. & Tsvetkova, T. A. (2007). Metallogeny of the Ukrainian Shield: regularities of the location of mineral deposits and their relationship with deep structure and dynamics of the lithosphere. Geofizicheskiy zhurnal, 29(6), 3—31 (in Russian).

Starostenko, V. I., Lukin, A. E., Tsvetkova, T. A., Zaets, L. N., Dontsov, V. V. & Savinykh, Yu. V. (2011). On the participation of super-deep fluids in naftidogenesis (according to the study of the unique oil deposits of the White Tiger). Geofizicheskiy zhurnal, 33(4), 3—32. doi: https://doi.org/10.24028/gzh.0203-3100.v33i4.2011.116893 (in Russian).

Starostenko, V. I., Kuprienko, P. Ya., Makarenko, I. V., Savchenko, A. S. & Legostaeva, O. V. (2015). Density heterogeneity of the Earth's crust of the Ingul megablock of the Ukrainian Shield according to the data of three-dimensional gravity modeling. Geofizicheskiy zhurnal, 37(3), 3—21. doi: https://doi.org/10.24028/gzh.0203-3100.v37i3.2015.111089 (in Russian).

Starostenko, V. I., Lukin, A. E., Tsvetkova, T. A. & Shumlyanskaya, A. A. (2014). Geofluids and up-to-date of activization of the Ingul megablock of the Ukrainian Shield. Geofizicheskiy zhurnal, 36(5), 3—25. doi: https://doi.org/10.24028/gzh.0203-3100.v36i5.2014.111567 (in Russian).

Starostenko, V. I., Pashkevich, I. K. & Kutas, R. I. (2002). Deep structure of the Ukrainian Shield. Geofizicheskiy zhurna, 24 (6), 36—48 (in Russian).

Strakhov, V. N. (2003). How geophysicists must solve linear ill-posed problems. Geofizicheskiy zhurnal, 25(1), 11—16 (in Russian).

Strakhov, V. N., Starostenko, V. I., Kharitonov, O. M., Aptikayev, F. F., Barkovsky, E. V., Kedrov, O. K. & Palienko, V. P. (1997). Seismic phenomena in the area of the Chernobyl NPP. Geofizicheskiy zhurnal, 19(3), 3—15 (in Russian).

Syvorotkin, V. L. (2002). Deep Earth degassing and global catastrophes. Moscow: Geoinformtsentr (in Russian).

Syvorotkin, V. L. (2012). Geological position of El Niño. Prostranstvo i vremya, 8(2), 169—173 (in Russian).

Tretyak, K. R., Maksymchuk, V. Yu. & Kutas, R. I. (Eds.). (2015). Modern geodynamics and geophysical fields of the Carpathians and adjacent territories. Lviv: Lviv Politekhnika Publ. House (in Ukrainian).

Timurziev, A. I. (2013). Laws of spatially-stratigraphic allocation of oil and gas accumulations within the West Siberian oil-and-gas bearing province on the basis of submissions about their deep origin and the young age and middle-late Neogene time of formation. Glubinnaya neft, 1(11), 1720—1759 (in Russian).

Ger, M., McAf, R., Woolf, C. (Eds.). (1979). Glossary of English geological terms (Vols. 1-3). Moscow: Mir (in Russian).

Trubitsyn, V. P. & Kharybin, E. V. (2010). Thermochemical mantle plumes. Doklady RAN, 435(5), 683—685 (in Russian).

Usenko, O. V. (2002). Heat flux and contemporary activation of the Donets basin (according to new data). Geofizicheskiy zhurnal, 24(5), 102—111 (in Russian).

Khain, V. E. (2003). Earth — a unique planet of the solar system. Vestnik RAN, (9), 822—829 (in Russian).

Haken, G. (1985). Synergetics. Moscow: Mir (in Russian).

Kharakhinov, V. V. & Shlenkin, S. I. (2004). Structure of fluid-conducting systems of oil-and-gas basins. In New ideas in oil-and-gas geology and geochemistry (pp. 522—524). Moscow: GEOS (in Russian).

Tsvetkova, T. A., Bugayenko, I. V. & Zaets, A. N. (2017). Seismic visualization of plumes and super-deep fluids in mantle under Ukraine. Geofizicheskiy zhurnal, 39(4), 42—54. doi: https://doi.org/10.24028/gzh.0203-3100.v39i4.2017.107506 (in Russian).

Chekunov, A. V., Kalyuzhnaya, L. T. & Ryabchun, L. I. (1989). Section M and oil-and-gas content of the Dnieper graben. Doklady AN USSR, (12), 19—21 (in Russian).

Shevchenko, V. I., Arefiev, S. S. & Lukk, A. A. (2011). Subvertical clusters of earthquake hypocenters unrelated to the tectonic structure of the Earth's crust. Fizika Zemli, (4), 16—38. doi: 10.1134/S1069351311030050 (in Russian).

Shestopalov, V. M. & Makarenko, A. N. (2013). Some results of studies developing the V. I. Vernadsky's idea about “gas breathing of the Earth”. Paper 1. Surface and near-surface manifestations of anomalous degassing. Heolohichnyy zhurnal, (3), 7—25 (in Russian).

Shestopalov, V. M. & Makarenko, A. N. (2014). Some results of studies developing the V. I. Vernadsky's idea about “gas breathing” of the Earth”. Paper 2. Depth degassing process in the Earth interior. Heolohichnyy zhurnal, (3), 7—28 (in Russian).

Shestopalov, V. М. (2016). On the possible geological and geophysical risks and prospects of the Chernobyl Exclusion Zone (to the 30th anniversary of the Chernobyl catastrophe). Geofizicheskiy zhurnal, 38(1), 3—16. doi: https://doi.org/10.24028/gzh.0203-3100.v38i1.2016.107715 (in Russian).

Shestopalov, V. M., Lukin, A. Yu., Zgonik, V. A., Makarenko, A. N., Larin, N. V. & Bohuslavsky, A. S. (2018). Essays on Earth degassing. Kiev: BADATA-Intek servis Publ. (in Russian).

Shuman, V. N. (2013). Electrodynamics and the response of the geomedium to the effect of external electromagnetic fields. Geofizicheskiy zhurnal, 35(5), 129—150 (in Russian).

Shumlyansky V. A. & Bezuglaya M. V. (1995). Ore potential of salt domes. Kiev: Publ. Institute of Fundamental Research (in Russian).

Shcheglov, A. D. (1983). Nonlinear metallogeny. Doklady AN SSSR, 271(6), 1471—1474 (in Russian).

Shcheglov, A. D. (1987). Major problems of contemporary metallogeny (theory and practice issues). Leningrad: Nedra (in Russian).

Yudovich, Ya. E. & Ketris, M. P. (2011). Geochemical indicators of lithogenesis (lithological geochemistry). Syktyvkar: Geoprint (in Russian).

Allegre, C. J., Staudachter, T. & Sandra, P. (1987). Rare gas systematies: formation of the atmosphere, evalution and structure of the Earth’s mantle. Earth and Planetary Science Letters, 81(2-3), 127—150. https://doi.org/10.1016/0012-821X(87)90151-8.

Bachler D., Kohl T. & Rubach L. (2002). Characteristics of upper crust convective flow in the Rhine graben: application to the Gamma fault at Landau (Germany). Proc. Inter conf.: The Earth’s Thermal Field and Related Research Methods (pp. 10—11). Moscow: RUPF.

Bennet, I. G. (1963). Geophysics and Human History. Systematics, I, 127—156.

Caliro, S., Chiodini, G., Moretti, R., Avino, R., Granieri, D., Russo, M. & Fiebig, I. (2007). The origin of the fumaroles of La Solfatara (Campi Flegres, South Italy). Geochimica et Cosmochimica Acta, 71(12), 3040—3055. doi: 10.1016/j.gca.2007.04.007.

Cande, S. C. & Stegman, D. R. (2011). Indian and African plate motions driven by the push force of the Reunion plume head. Nature, 475, 47—52.

Cathles, L. M., Su, Zhend & Chen, Duofu. (2010). The physics of gas chimney and pockmark formation with implications for assessment of seafoor hazards and gas sequestration. Marine and Petroleum Geology, 27(1), 82—91. https://doi.org/10.1016/j.marpetgeo.2009.09.010.

Chiodini, G., Paonita, A., Aluppa, A., Costa, A., Caliro, S., De Marino, P., Acocello, V. & Vandemeulebrouck, J. (2016). Magmas near the critical degassing pressure drive Volcanic unrest towards a critical state. Nature Communication, 7, Article number 13712.

D’Auria, L., Pepe, S., Castaldo, R., Gludicepietro, F., Macedonio, G., Ricciolino, P., … Zinno, J. (2015). Magma injection beneath the urban area of Naples: a new mechanism for the 2012—2013 volcanic unrest at Campi Flegrei caldera. Scientific Reports, (5), 1310. doi: 10.1038/srep13100.

De Boever, E., Swennen, R. & Dimitrov, L. (2006). Lower Eocene carbonate comented chimneys Varna, NE Bulgaria): Formation mechanisms and the (a)biological mediation of chimney growth? Sedimentary Geology, 185, 159—171. https://doi.org/10.1016/j.sedgeo.2005.12.010.

De Boer, J. Z., Sanders, D. T., Ballard, R. D. (2004). Volcanoes in Human History. The Far-Reaching Effects of Major Eruptions. 2004. Princeton University Press.

Francis, P. (1993). Volcanoes. A Planetary Perspective. New York: Oxford Uneversity Press inc., 443 p.

Friedman, J. (1970). Some investigations of the deposition of travertine from Hot Springs—I. The isotopic chemistry of a travertine-depositing spring. Geochimica et Cosmochimica Acta, 34(12), 1303—1315. https://doi.org/10.1016/0016-7037(70)90043-8.

Galanopoulos, A. G. (1964). Die egiptichen Plagen und der Auszug Israels aus geologisher Sight. Z. Alterum.,10, 131—137.

Geyko, V. S. (2004). A general theory of the seismic travel-time tomography. Geofizicheskiy zhurnal, 26(2), 3—32.

Gilat, A. L. & Vol, A. (2005). Primordial hydrogen-helium degassing, an overlooked major energy source for internal terrestrial processes. HAIT Journal of Science and Engineering B., 2(1-2), 125—167.

Gilat, A. L. & Vol, A. (2012). Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes. Geoscience Frontiers, 3(6), 911—921. doi:10.1016/j.gsf.2012.03.009.

Judd, A., Hovland, M. (2007). Seabed fluid flow — impact on geology, biology and the marine environment. Cambridge University Press, 400 p.

Kerr, R. A. (2006). Rising plumes in Earth’s mantle: phantom or real? Science, 313, 1726. DOI: 10.1126/science.313.5794.1726.

Kleinekathoefen, U., Tang, K. T., Toerries, J. P. & Yiu, C. L. (1996). Potentials for some rare gas and alkali-helium systems calculated from the surface integral method. Chemical Physics Letters, 249(3-4), 257—263. https://doi.org/10.1016/0009-2614(95)01388-1.

Larin, N. V., Zgonnik, V., Rodina, S., Deville, E., Prinzhofer, A. & Larin, V. N. (2015). Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia. Natural Resources Research, 24(3), 369—383. doi: 10.1007/s11053-014-9257-5.

Lindenfeld, M., Rümpker, G., Koehn, D. & Batte, A. (2012). Fluid-triggered earthquake swarms in the Rwenzori region, East African Rift — Evidence for rift initiation. Tectonophysics, 566-567, 95—104. doi: 10.1016/j.tecto.2012.07.010.

Loseth, H., Wensaas, L., Arnsen, B., Hanken, N.-M., Basire, Ch. & Graue, K. (2011). 1000 m long gas blow-out pipes. Marine and Petroleum Geology, 28(5), 1047—1060. doi:10.1016/j.marpetgeo.2010.10.001

Müller, R. D., Rouer J. Y. & Lowver, L. A. (1993). Revised plate motions relative to the hotspos from combined Atlantic and Indian Ocean hotspot tracks. Geology, 21(3), 275—278. https://doi.org/10.1130/0091-7613(1993)021<0275:rpmrtt>2.3.co;2.

Morgan, W. J. (1971). Convection plumes in the lower mantie. Nature, 230, 42—43. https://doi.org/10.1038/230042a0.

Morgan, W. J. (1972). Deep mantle convection plumes and plate motions. American Association of Petroleum Geologists Bulletin, 56, 203—213.

Moss, J. L. (2010). The spatial and Temporal distribution of pipe and pockmark formation. PhD. Thesis, Cardiff University. 314 p. https://orca.cf.ac.uk/54111/1/U511205.pdf.

Murakami M., Hirose K., Yurimoto H., Nakashima S. & Takafuji N. (2002). Water in Earth's lower mantle. Science, 295(5561), 1885—1887. DOI: 10.1126/science.1065998.

Nittmann, J., Daccord, G. & Stanley, H. (1985). When do “viscous fingers” have fractal measurement? Nature, 314, 141—144.

Nuccio, P. M. & Paonita, A. (2000). Investigation of the noble gas solubility in H2O and CO2 bearing silicate liquids at moderate pressure: the extended ionic porosity (EIP) model. Earth and Planetary Science Letters, 183(3-4), 499—512. https://doi.org/10.1016/S0012-821X(00)00297-1.

Ohtani, E., Shibazaki, Y. & Terasaki, H. G. (2009). Distribution of Hydrogen in the Deep Earth and its Role in Earth’s dynamics (invited). American Geophysical Union, Fall Meeting, abstract V14C-01.

Okuchi T. (1997). Hydrogen Partitioning into Molten Iron at High Pressure: Implications for Earth’s Core. Science, 278(5344), 1781—1784. DOI: 10.1126/science.278.5344.1781.

Pilchen, R. & Argent, J. (2007). Mega-pockmarks and linear pockmark trains on the West African continental margin. Marine Geology, 244(1-4), 15—32. https://doi.org/10.1016/j.margeo.2007.05.002.

Rampino, M. & Ambrose, S. H. (2000). Volcanic Winter in the Garden of Eden: The Toba Super eruption and Late Pleistocene Human Population Crack. Geological Society of America, Special Paper 345, P. 71—82.

Rhee, L., Gasparini, F. M. & Bishop, D. (1989). Finite-size scaling of the superfluid density of He4 confined between silicon wafers. Physical Review Letters, 63(4), 410. https://doi.org/10.1103/PhysRevLett.63.410

Ross, J. A., Peakall, J. & Keevil, G. M. (2014). Facies and flow regimes of sandstone — hosted columnar intrusions: Insights from the pipes of Kodachrome Basin State Park. Sedimentology, 61(6), 1764—1792. https://doi.org/10.1111/sed.12115.

Saunders, M., Jimenez-Vazquez H. A., Cross R. J., Mroczkowski S., Freedlerg D. I. & Anet F. A. L. (1994). Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70. Nature, 367, 256—258.

Simkin, T., Under, J. D., Tilling, R. I., Vogt, P. R. & Spall, H. (1994). This Dynamic Planet, World Map of Volcanoes, Earthquakes, Impact Craters and Plate Tectonics: Explanatory Notes. US Geological Survey in cooperation with the Smithsonian Institution.

Syvorotkin, V. L. (2010). Hydrogen degassing of the Earth: Natural disasters and the biosphere. In Man and the Geosphere (pp. 307—347). New York: Nov Science Publishers.

Van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V., & Gassmöller, R. (2011). Acceleration and deceleration of India — Asia convergence since the Cretaceous: robes of mantle plumes and continental collision. Journal of Geophysical Research, 116, B06101. doi: 10.1029/2010JB 008051.

Vos, W. L., Finger, L. W., Hemley, A. J. & Mao, N. K. (1996). Pressure dependence of hydrogen bonding in a novel H2O—H2 clathrate. Chemical Physics Letters, 257(5-6), 524—530. https://doi.org/10.1016/0009-2614(96)00583-0.

Wilston, J. T. (1963). A Possible origin of the Hawaiion islands. Canadian Journal of Physics, 41(6), 863—870, https://doi.org/10.1139/p63-094.

Zarifi Z. & Havskov J. (2003). Characteristics of dense nests of deep and intermediate-depth seismicity. Advances in Geophysics, 46, 237—276. https://doi.org/10.1016/S0065-2687(03)46004-4,

Zgonnik, V., Beaumont, V., Deville, E., Larin, N. V., Pillot, D., Farrell, K. M. (2015). Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA. Progress in Earth and Planetary Science, 2:31. doi:10.1186/s40645-015-0062-5.

##submission.downloads##

Опубліковано

2018-08-30

Як цитувати

Lukin, A., & Shestopalov, V. (2018). Від нової геологічної парадигми до завдань регіональних геолого-геофізичних досліджень. Геофізичний журнал, 40(4), 3–72. https://doi.org/10.24028/gzh.0203-3100.v40i4.2018.140610

Номер

Розділ

Статті