Порівняння спектральних характеристик приповерхневих шарів під сейсмічними станціями «Тросник», «Ужгород», «Міжгір’я», розрахованих методом скінченних елементів, з експериментальними

Автор(и)

  • B. Ye. Kuplevskyi Відділ сейсмічності Карпатського регіону Інституту геофізики ім. С. І. Субботіна НАН України, Україна
  • T. B. Brych Відділ сейсмічності Карпатського регіону Інституту геофізики ім. С. І. Субботіна НАН України, Україна

DOI:

https://doi.org/10.24028/gzh.0203-3100.v40i6.2018.151023

Ключові слова:

modeling, finite element method, transfer characteristic, Nakamura’s technique, resonance frequency, interference

Анотація

Розглянуто обчислення теоретичних передавальних характеристик осадових шарів під сейсмічними станціями Карпатської сейсмічної мережі «Тросник», «Ужгород» та «Міжгір'я» з використанням методу скінченних елементів. Результати обчислень використані для порівняння з динамікою приповерхневих шарів, отриманими експериментальним методом; перевірки відповідності резонансних властивостей досліджуваної середовища, отриманих цими методами, для можливості їх застосування в регіональних сейсмологічних досліджень. При вирішенні прямої динамічної задачі сейсміки методом кінцевих елементів не втрачається можливість обліку різних обмінних ефектів всередині моделі, а також можна розраховувати моделі зі складним геометричним будовою середовища і різними включеннями. За розробленою методикою моделювання хвильового поля методом кінцевих елементів змодельовані коливання для моделей сейсмічного перетину під станціями «Тросник», «Ужгород» та «Міжгір'я». За результатами моделювання розраховані теоретичні спектральні співвідношення для цих станцій. Для сейсмічної станції «Міжгір'я» отримано збіг двох інтерференційних максимумів на частоті 4 і 10 Гц для експериментального і теоретичного графіків. Для сейсмічної станції «Ужгород» графіки, отримані експериментальним і модельним методами, показали ідентичне поведінка у всьому діапазоні частот, за цими графіками виділено стабільне джерело шуму в межах міста. Для сейсмічної станції «Тросник» отримано розбіжність в поведінці експериментальних і модельних графіків вище 6 Гц. Такі результати пояснюються високим рівнем грунтових вод під сейсмічної станцією, що не враховувалася при побудові моделі для розрахунку методом кінцевих елементів.

Вперше спектральні характеристики приповерхневих шарів під сейсмічними станціями «Тросник», «Ужгород», «Міжгір'я» розраховані методом кінцевих елементів. Проведено порівняння результатів математичного моделювання з експериментальними вимірами. Інформація про динамічні параметри верхніх осадових шарів під сейсмостанція, які в спектральному діапазоні виступають в якості найбільшого фільтра частот коливань, дозволить більш точно інтерпретувати події, зареєстровані цими станціями. Розраховані спектральні співвідношення дають можливість оцінити ступінь впливу середовища на записи сейсмічних сигналів на станціях. Найбільший вплив виявлено на частотах, що відповідають отриманим резонансним максимумів і мінімумів. Ці результати необхідно також враховувати при оцінці параметрів можливого сейсмічного впливу на даній території.

Посилання

Azimi, Sh. A., Kalinina, A. V., Kalinin, V. V., & Pivovarov, V. L. (1967). Dynamic and kinematic features of pulses propagating in a medium with absorption and dispersion of the phase velocity. Vestnik Moskovskogo universiteta. Seriya geologicheskaya, (1), 32—36 (in Russian).

Bate, K., & Wilson, E. (1982). Numerical analysis methods and finite element method. Moscow: Stroyizdat (in Russian).

Brych, T. B. (2010). Mathematical modeling of the influence of deepening of oil and gas well on rock stress-strain state. Visnyk Lvivskoho universytetu. Seriya fizychna, (45), 135—141 (in Ukrainian).

Verbytskyy, S. T., Rozhok, N., Brych, T. B., & Kuplovskyy, B. Ye. (2011). Nakamura’s technique and finite element method in solid amplitude-frequency response investigation. Geodynamika, 11(2), 38—40 (in Ukrainian).

Gnyp, A. G. (2012). Theoretical and experimental H/V spectra for the environment under the seismic station «Mizhgirya»: Proceedings of the scientific conference «Seismological and geophysical studies in seismically active regions» (dedicated to the 80th anniversary of the birth of T. S. Verbitskyy), May 29—30, 2012, Lviv (pp. 37—40) (in Ukrainian).

Gnyp, A. R. (2016). Synthetic and experimental frequency characteristics of near-surface layers under the seismic stations Trosnik, Uzhgorod, and Mizhhirya. Geodynamika, 20(1), 144—154. https://doi.org/10.23939/jgd2016.01.144 (in Ukrainian).

Gnyp, A. R. (2015). Synthetic frequency characteristics of near-surface layers under the seismic stations Trosnyk, Uzhgorod, and Mezhgoria. Geodynamika, 19(2), 72—83. https://doi.org/10.23939/jgd2015.02.072 (in Ukrainian).

Ilyushin, A. A. (1978). Mechanics of continuum. Moscow: Moscow University Press (in Russian).

Kendzera, O. V. (2015). Seismic hazard assessment and protection against earthquakes (practical applications of developments of Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine). Visnyk Natsionalnoyi akademiyi nauk Ukrayiny, (2), 44—57. https://doi.org/10.15407/visn2015.02.044 (in Ukrainian).

Kendzera, O., & Semenova, Yu. (2010). Allowing for amplitude-frequency characteristics of the ground layer at the seismic risk microzoning of building site in Odessa. Visnyk Kyyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Seriya Heolohiya, (2), 10—13 (in Ukrainian).

Kobranova, V. N. (1962). Physical properties of rocks (Petrophysics). V. N. Dakhnov (Ed.). Moscow: Gostoptekhizdat (in Russian).

Kuplovskyy, B. Ye. (2010). Design of wave field for complicated arranged seismic cuts. Visnyk Lvivskoho universytetu. Seriya fizychna, (45), 126—134 (in Ukrainian).

Sedov, L. I. (1984). Mechanics of continuum (Vol. 2).

Moscow: Nauka (in Russian).

Melnikov, N. V., Rzhevskiy, V. V., & Protodyakonov, M. M. (Eds.). (1975). Reference book (cadastre) of physical properties of rocks. Moscow: Nedra (in Russian).

Timoshenko, S. P., & Gudier, J. (1975). The Theory of Elasticity. Moscow: Nauka (in Russian).

Abercrombie, R. E. (1997). Near-surface attenuation and site effects from comparison of surface and deep borehole recordings. Bulletin of the Seismological Society of America, 87(3), 731—744.

Bathe, K.-J. (1982). Finite element procedures in engineering analysis. New Jersey: Prentice-Hall, Inc., Englewood Cliffs.

Haskell, N. A. (1953). The dispersion of waves in multilayered media. Bulletin of the Seismological Society of America, 43, 17—34.

Hutton, D. V. (2004). Fundamentals of Finite Element Analysis. New York: McGraw-Hill.

Langston, Ch. A., Chiu, Sh. C., Lawrence, Z., Bodin, P., & Horton, S. (2009). Array Observations of Microseismic Noise and the Nature of H/V in the Mississippi Embayment. Bulletin of the Seismological Society of America, 99(5), 2893—2911.

Nakamura, Y. (2000). Clear Identification of Fundamental Idea of Nakamura’s Technique and its Applications. https://www.iitk.ac.in/nicee/wcee/article/2656.pdf.

Nakamura, Y. A. (1989). Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface. Quarterly Report of RTRI, Railway Technical Research Institute (RTRI), 30(1), 25—33.

Singiresu, S. R. (2004). The Finite Element Method in Engineering. Fourth edition. Miami: Elsevier Science & Technology Books.

Starodub, G., & Gnyp, A. (1999). Models of the Earth’s Crust Structure in the East Carpathian Region determined from Inversion of Farfield P-waveforms. Acta Geophysica Polonica, 47(4), 375—400.

Steidl, J. H., Tumarkin, A. G., & Archuleta, R. J. (1996). What is a reference site? Bulletin of the Seismological Society of America, 86(6), 1733—1748.

Thomson, W. T. (1950). Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics, 21(2), 89—93. https://doi.org/10.1063/1.1699629.

Zhangxin, C. (2005). Finite Element Methods and Their Applications. Berlin, Heidelgerg: Springer-Verlag.

Zienkiewicz, O. C., & Taylor, R. L. (2005). The Finite Element Method for solid and structural mechanics. Six edition (Vol. 1—3). Oxford: Elsevier Butterworth-Heinemann.

##submission.downloads##

Опубліковано

2018-12-21

Як цитувати

Kuplevskyi, B. Y., & Brych, T. B. (2018). Порівняння спектральних характеристик приповерхневих шарів під сейсмічними станціями «Тросник», «Ужгород», «Міжгір’я», розрахованих методом скінченних елементів, з експериментальними. Геофізичний журнал, 40(6), 115–126. https://doi.org/10.24028/gzh.0203-3100.v40i6.2018.151023

Номер

Розділ

Статті