Будова кори при переході від Східночорноморської западини до валу Шатського за результатами переінтерпретації профілів ГСЗ 14, 15, 16

Автор(и)

  • E. P. Baranova
  • Т. P. Yegorova Інститут геофізики ім. С.І.Субботіна Національної академії наук України, Україна

DOI:

https://doi.org/10.24028/gzh.0203-3100.v42i3.2020.204702

Ключові слова:

глибинне сейсмічне зондування (ГСЗ), променеве моделювання, швидкісна модель кори, Східночорноморська западина, вал Шатського

Анотація

Наведено результати швидкісного моделювання (ray-tracing modelling) за трьома профілями ГСЗ 14, 15, 16, відпрацьованими у східній частині Чорного моря понад 40 років тому. Ці профілі є системою радіальних профілів, що розходяться з одного загального пункту вибуху в Східночорноморській западини (CЧЗ) і перетинають вал Шатського. За результатами моделювання тонка (~10 км) кристалічна кора СЧЗ, сейсмічні швидкості в якій збільшуються від 6,5 км/с у фундаменті до 7,0 км/с на поверхні Мохо (20—22 км), перекрита осадами потужністю ~10 км. Вал Шатського має континентальну кору ~30 км потужності з двома шарами — верхньою корою 15 км потужності (зі швидкістю 6,0—6,5 км/с) і нижньої корою 10 км потужності (6,5—7 км/с). Перехід від тонкої субокеанічної кори ВЧВ до блока континентальної кори валу Шатського відбувається досить різко, на інтервалі ~25 км, де спостерігаються зміни в усіх шарах кори — від осадів до поверхні Мохо. Зона переходу двох типів кори має лінійний характер, паралельна береговій лінії східної частини Чорного моря і асоціюється з лінійною магнітною Алуштинсько-Батумською аномалією північно-західного простягання. Зазначені особливості можуть свідчити на користь тектонічної природи перехідної зони, формування та активізація якої відбувалися на головних етапах еволюції регіону — при закритті мезозойського океану Тетіс, рифтогенному розкритті СЧЗ у крейдяний період і в ході альпійського тектогенезу в умовах стиснення. Клиноподібна форма CЧЗ, що розширюється у південно-східному напрямку до 160—180 км, добре узгоджується з ідеєю рифтогенного розкриття СЧЗ у ранній крейді в результаті ротації Центрально-Чорноморського підняття (валу Архангельського) проти годинникової стрілки.

Посилання

Amelin, N., Leonchik, M., Petrov, Ye., & Senin, B. (2014). Geology without limits: new data on regional setting of the Black Sea. Geologiya i geofizika, (11), 44—48 (in Russian).

Baranova, E. P., Yegorova, T. P., & Omelchenko, V. D. (2011). Detection of a waveguide in the basement of the northwestern shelf of the Black Sea according to theresults of reinterpretation of the DSS materials of profiles 26 and 25. Geofizicheskiy zhurnal, 33(6), 15—29. https://doi.org/10.24028/gzh.0203-3100.v33i6.2011.116790 (in Russian).

Baranova, E. P., Yegorova, T. P., & Omelchenko, V. D. (2008). Reinterpretation of seismic DSS data and gravity modelling on profiles 25, 28 and 29 in Black and Azov Seas. Geofizicheskiy zhurnal, 30(5), 124—144 (in Russian).

Belousov, V. V., & Volvosky, B. S. (Eds). (1989). Structure and Evolution of Earth’s Crust and Upper Mantle of Black Sea. Moscow: Nauka, 208 p. (in Russian).

Gamkrelidze, N. P., Gongadze, S. A., Yavolovskaya, O. V., Gamkrelidze, M. I., Kiria, D. K., Glonti, N. Ya., Mindeli, P. Sh., Adikashvili, L. N., & Nikolaishvili, M. M. (2017). Deep structure of the eastern sector of the Black Sea and the questions about the western offshore continuation of the Adjara-Trialet zone. In Proceedings of the Michael Nodia Institute of Geophysics (Vol. LXVII, pp. 71—90) (in Russian).

Gonchar, V. V. (2019). East-European microplate as an indentor and its orogenic margin. Geofizicheskiy zhurnal, 41(1), 108—136 https://doi.org/10.24028/gzh.0203-3100.v41i1.2019.158867 (in Russian).

Malovitskiy, Y. P., & Neprochnov, Yu. P. (Eds). (1972). Structure of the Western Part of the Black Sea Basin. Moscow: Nauka, 244 p. (in Russian).

Malovitskiy, Y. P., Uglov, B. D., & Osipov, G. V. (1972). Some features of the deep structure of the Black Sea Basin from hydromagnetic survey. In Marine geology and geophysics (pp. 12—21). Riga: Zinatne (in Russian).

Moskalenko, V. N., & Malovitskiy, Y. P. (1974). Results of deep seismic sounding on transmeridional profile through the Sea of Azov and the Black Sea. Izvestiya AN SSSR. Ser. Geologicheskaya, (9), 23—31 (in Russian).

Neprochnov, Yu. P., Neprochnova, A. F., Lunarskiy, G. N., Mizno, M. F., Mupsidze, G. Ya., & Chichinadze, V. K. (1966). Structure of the Earth’s crust in the eastern part of Black Sea from deep seismic sounding. Okeanologiya, (1), 10—24 (in Russian).

Osipov, G. V., Svistunov, Yu. I., & Terekhov, A. A. (1977). Possible nature of Alushta—Batumi magnetic anomaly in the Black Sea. Geotektonika, (1), 74—79 (in Russian).

Tugolesov, D. A., Gorshkov, A. S., Meisner, L. B., Soloviev, V. V., & Khakhalev, V. I. (1985). Tectonics of the Meso-Cenozoic Sediments of the Black Sea Basin. Moscow: Nedra, 215 p. (in Russian).

Shreider, A. A., Kazmin, V. G., & Lygin, V. S. (1997). Magnetic anomalies and the age problem of the Black Sea basin. Geotektonika, (1), 59—70 (in Russian).

Yanovskaya, T. B., Gobarenko, V. S., & Yegorova, T. P. (2016). Subcrustal Structure of the Black Sea Basin from seismological data. Fizika Zemli, (1), 15—30. doi: 10.1134/S1069351316010109 (in Russian).

Barrier, E., Vrielynck, B., Brouillet, J. F. & Brunet, M. F. (2018). Paleotectonic Reconstruction of the Central Tethyan Realm. Tectonono-Sedimentary-Palinspastic maps from Late Permian to Pliocene. CCGM/CGMW. Paris, http://www.ccgm.org. Atlas of 20 maps (scale: 1/15 000 000).

Blakely, R. J., Brocher, T. M., & Wells, R. E. (2005). Subduction zone magnetic anomalies and implications for hydrated forearc mantle. Geology, 33(6), 445—448. doi: 10.1130/G21447.1

Clowes, R. M., & Hyndman, R. D. (2002). Geophysical studies of the northern Cascadia subduction zone off western Canada and their implications for great earthquake seismotectonics: a review. In Y. Fujinawa, & A. Yoshida (Eds.), Seismotectonics in Convergent Plate Boundary (pp. 1—23). Terra Scientific Publishing Company, Tokyo.

Finetti, I., Bricchi, G., Pipan, M., & Xuan, Z. (1988). Geophysical study of the Black Sea. Bolletino di Geofisica Teorica ed Applicata, XXX(117-118), 197—324.

Finn, C. (1994). Aeromagnetic evidence for a buried Early Cretaceous magmatic arc, northeast Japan. Journal of Geophysical Research: Solid Earth, 99, 22165—22185. https://doi.org/10.1029/94JB00855.

Gobarenko, V. S., Murovskaya, A. V., Yegorova, T. P., & Sheremet, E. E. (2016). Collision processes at the northern coast of the Black Sea. Geotectonics, 50(4), 407—424. doi: 10.1134/S0016852116040026.

Golonka, J. (2004). Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381(1-4), 235—273. doi: 10.1016/j.tecto.2002.06.004.

Graham, R., Kaymakci, N., & Horn, B. W. (2013). The Black Sea: something different? GeoExPro, October 2013 (pp. 58—62).

Grow, J. A., & Bowin, C. O. (1975). Evidence for high—density crust and mantle beneath the Chile Trench due to descending lithosphere. Journal of Geophysical Research, 80, 1449—1458. doi: 10.1029/JB080i011p01449.

Hippolite, J-C., Murovskaya, A., Volfman, Yu., Yegorova, T., Gintov, O., Kaymakci, N., & Sangu, E. (2018). Age and geodynamic evolution of the Black Sea Basin: Tectonic evidences of rifting in Crimea. Marine and Petroleum Geology, 993, 298—314. doi: 10.1016/j.marpetgeo.2018.03.009.

Hobro, J. W. D., Singh, S. C., & Minshull, T. A. (2003). Three-dimensional tomographic inversion of combined reflection and refraction seismic traveltime data. Geophysical Journal International, 152, 79—93. doi: 10.1046/j.1365—246X.2003.01822.x.

Meijers, M. J. M., Vrouwe, B., van Hinsbergen, D. J. J., Kuiper, K. F., Wijbrans, J., Davies, G. R., Stephenson, R. A., Kaymakci, N., Matenco, L., & Saintot, A. (2010). Jurassic arc volcanism on Crimea (Ukraine): implications for the paleosubduction zone configuration of the Black Sea region. Lithos, 119, 412—426. doi: 10.1016/j.lithos.2010.07.017.

Neprochnov, Yu. P., Kosminskaya, I. P., & Malovitsky, Ya. P. (1970). Structure of the crust and upper mantle of the Black and Caspian Seas. Tectonophysics, 10, 517—538. doi: 10.1016/0040-1951(70)90042-9.

Nikishin, A. M., Okay, A. I., Tüysüz, O., Demirer, A., Wannier, M., Amelin, N., & Petrov, E. (2015). The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 2. Tectonic history and peleogeography. Marine and Petroleum Geology, 59, 656— 670. doi: 0.1016/j.marpetgeo.2014.08.018.

Nikishin, A. M., Wannier, M., Alekseev, A. S., Almendiger, O. A., Fokin, P. A., Gabdullin, R. R., Khudoley, A. K., Kopaevich, L. F., Mityukov, A. V., Petrov, E. I., & Rubtsova, E. V. (2017). Mesozoic to recent geological history of southern Crimea and the Eastern Black Sea region. In M. R. Sosson, Sh. Stephenson, S. A. Adamia (Eds.), Tectonic Evolution of the Eastern Black Sea and Caucasus (Vol. 428, pp. 241— 264). Geol. Soc. London. Spec. Publ. doi: 10.1144/SP428.1.

Okay, A. I., & Nikishin, A. M. (2015). Tectonic evolution of the southern margin of Laurasia in the Black Sea region. International Geology Review, 57(5-8), 1051—1076. doi:10.1080/00206814.2015.1010609.

Okay, A. I., Şengör, A. M. C., & Görür, N. (1994). Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology, 22, 267—270. doi: 10.1130/0091- 7613(1994)022<0267:KHOTOO>2.3.CO;2.

Robinson, A. G., Rudat, J. H., Banks, C. J., & Wiles, R. L. F. (1996). Petroleum geology of the Black Sea. Marine and Petroleum Geology, 13, 195—223. doi: 10.1016/0264-8172(95)00042-9.

Saintot, A., Stephenson, R. A., & Chalot-Prat, F. (2007). The position of Crimea and Greater Caucasus along the active margin of Eurasia (from early Jurassic to present): International Symposium on the Middle East Basins Evolution. Abstract. Paris. 4—5 December, 2007 (P. 69).

Saintot, A., Stephenson, R. A., Stovba, S., Brunet, M.-F., Yegorova, T., & Starostenko, V. (2006). The evolution of the southern margin of Eastern Europe (Eastern European and Scythian platforms) from the latest Precambrian-Early Palaeozoic to the Early Cretaceous. In European Lithosphere Geological Society Memoir 32 (pp. 481—505). doi: 10.1144/GSL.MEM.2006.032.01.30.

Scott, C. L., Shillington, D. J., Minshull, T. A., Edwards, R. A., Brown, P. J., & White, N. J. 2009. Wide-angle seismic data reveal extensive overpressures in Eastern Black Sea. Geophysical Journal International, 178, 1145—1163. doi: 10.1111/j.1365-246X.2009.04215.x.

Shillington, D. J., Minshull, T. A., Edwards, R. A., & White, N. (2017). Crustal structure of the Mid Black Sea High from wide-angle seismic data. In: M. D. Simmons, G. C. Tari, & A. I. Okay (Eds.), Petroleum Geology of the Black Sea (Vol. 464, pp. 19—32). Geol. Soc. London. Spec. Publ. doi: 0.1144/SP464.6.

Shillington, D. J., Scott, C. L., Minshull, T. A., Edwards, R. A., Brown, P. J., & White, N. (2009). Abrupt transition from magma-starved to magma-rich rifting in the eastern Black Sea. Geology, 37(1), 7—10. doi: 10.1130/G25302A.1.

Starostenko, V., Janik, T., Stephenson, R., Gryn, D., Rusakov, O., Szuba, W., Środa, P., Grad, M., Guterch, A., Flüh, E., Thybo, H., Artemieva, I., Tolkunov, A., Sydorenko, G., Lysynchuk, D., Omelchenko, V., Kolomiyets, K., Legostateva, O., Dannowski, A., & Shulgin, A. (2017). DOBRE-2 WARR profile: the Earth’s crust across Crimea between the pre-Azov Massif and the north eastern Black Sea Basin. In: M. Sosson, R. A. Stephenson, S. A. Adamia (Eds.), Tectonic Evolution of the Eastern Black Sea and Caucasus (Vol. 428, pp. 199—220). Geol. Soc. London. Spec. Publ. doi: 10.1144/SP428.11.

Starostenko, V., Janik, T., Yegorova, T., Farfuliak, L., Czuba, W., Środa, P., Thybo, H., Artemieva, I., Sosson, M., Volfman, Yu., Kolomiyets, K., Lysynchuk, D., Omelchenko, V., Gryn, D., Guterch, A., Komminaho, K., Legostaeva, O., Tiira, T., & Tolkunov, A. (2015). Seismic model of the crust and upper mantle in the Scythian Platform: the DOBRE-5 profile across the north western Black Sea and the Crimean Peninsula. Geophysical Journal International, 201, 406—428. doi: 10.1093/gji/ggv018.

Yegorova, T. P., Bakhmutov, V., Janik, T., Grad, M. (2011). Geophysical and petrological models for the lithosphere structure of the Antarctic Peninsula continental margin. Geophysical Journal International, 184, 90—110. doi: 10.1111/j.1365-246X.2010.04867.x.

Yegorova, T., Baranova, E., & Omelchenko, V. (2010). The crustal structure of the Black Sea from the reinterpretatiom of Deep Seismic Sounding data acquired in the 1960s. In: M. Sosson, N. Kaymakci, R. Stephenson, F. Bergerat & Starostenko V. (Eds.), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform (Vol. 340, pp. 43—56). Geol. Soc. London. Spec. Publ. doi: 10.1144/SP340.4.

Yegorova, T., Gobarenko, V., & Yanovskaya, T. (2013). Lithosphere structure of the Black Sea from 3-D gravity analysis and seismic tomography. Geophysical Journal International, 193, 287—303. doi: 10.1093/gji/ggs098.

Zelt, C. A., & Smith, R. B. (1992). Seismic traveltime inversion for 2—D crustal velocity structure. Geophysical Journal International, 108, 16—34. doi: 10.1111/j.1365—246X.1992.tb00836.x.

Zonenshain, L. P., & Le Pichon, X. (1986). Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics, 123, 181—211. doi: 10.1016/0040-1951(86)90197-6.

##submission.downloads##

Опубліковано

2020-06-10

Як цитувати

Baranova, E. P., & Yegorova Т. P. (2020). Будова кори при переході від Східночорноморської западини до валу Шатського за результатами переінтерпретації профілів ГСЗ 14, 15, 16. Геофізичний журнал, 42(3), 59–77. https://doi.org/10.24028/gzh.0203-3100.v42i3.2020.204702

Номер

Розділ

Статті