Геотектонічні та геотермічні умови зон флюїдного і газового розвантаження в Чорному морі

Автор(и)

  • R.I. Kutas Інститут геофізики ім. С.І. Субботіна НАН України, Україна

DOI:

https://doi.org/10.24028/gzh.0203-3100.v42i5.2020.215070

Ключові слова:

Чорноморський басейн, дегазація, грязьові вулкани, метан, вуглець, геотермічні та геодинамічні умови

Анотація

Наведено результати дослідження геодинамічних, геотермічних і геохімічних умов зон газової емісії в анаеробному басейні Чорного моря. Виділення газу в осадовій товщі і на її поверхні виявляються у вигляді фонтанів, сипів, грязьових вулканів, газових гідратів, аутигенних карбонатів. У Чорноморському басейні виявлено декілька тисяч газових сипів і понад 80 грязьових вулканів. Вони розміщуються переважно в зонах тектонічних порушень, глибинних розломів, глиняних діапірів та інших проявів неотектонічної активності. Більшість газових сипів концентруються на зовнішньому шельфі та у верхній частині континентального схилу (в інтервалі глибин 50—800 м), а грязьові вулкани — у центральній, найбільш зануреній частині Західночорноморського суббасейну і в периферійних прогинах. Газові гідрати трапляються поблизу газових сипів і грязьових вулканів у приповерхневому шарі осадів за глибини моря понад 700 м. Серед газів переважає метан (90—95 %). Як домішки зафіксовано також гомологи метану, діоксид вуглецю, сірководень, азот та ін. У брекчії грязьових вулканів містяться нафтопродукти, різні мінерали (карбонати, сульфіди, сульфати, фосфати), дисперсні частинки самородних металів. За сейсмічними даними підвідні канали грязьових вулканів проникають до підошви майкопських відкладів або мезозойського фундаменту (до глибин 10—16 км).

Проаналізовано ізотопний склад метану із різних джерел (осадів, сипів, грязьових вулканів та аутигенних карбонатів). Показник ізотопного складу вуглецю (δ13С) змінюється від -90 до -30 ‰ у метані і від -46,9 до -8,5 ‰ у карбонатах. Ізотопний склад вуглецю у метані залежить від його походження (органічного чи неорганічного), термодинамічних умов утворення та міграції. Зміна цих умов супроводжується зміною хімічного складу вуглеводневих газів (від СО2 до СН4) і фракціонуванням ізотопного складу їх компонентів. Такі зміни можливі лише в мантійних умовах. Гетерогенність ізотопного складу вуглецю в метані Чорноморського басейну відображає різноманітність умов його утворення і узгоджується з геотектонічним районуванням на рівні фундаменту та особливостями геодинамічного й геотермічного режиму. Така узгодженість свідчить про значну (якщо не вирішальну) роль глибинних процесів у дегазації Землі.

За комплексним аналізом особливостей вияву газової емісії, хімічного та ізотопного складу вуглецевих газів, геодинамічних і геотермічних умов можна припустити, що метан у Чорноморському басейні є продуктом змішування в змінних пропорціях метану різного походження з відмінним ізотопним складом вуглецю: мікробіогенного у придонному шарі осадів, термогенного в осадовому шарі й глибинного, що надходить по розломних зонах із мантії у вигляді флюїдогазових потоків. Вуглеводні утворюються за певних термодинамічних умов (250<T<700 °C) і наявності в достатній кількості вихідних елементів (C—H—O). Втім у деплетованій верхній мантії бракує вуглецю. В процесі еволюції Землі він разом з іншими леткими елементами був переміщений в земну кору. Крім того, в земній корі накопичився вуглець біогенного походження. Отже, для генерації вуглеводнів необхідні відповідні геодинамічні умови, які сприяють зануренню і нагріванню земної кори (умови субдукції та колізії). Рециклінг земної кори задовільно пояснює і деякі інші особливості дегазації Землі, зокрема збагачення глибинних газових потоків легким ізотопом вуглецю.

Посилання

Bazhenova, O.K., Fadeeva, N.P., Sent-Ger¬mes, M.L., Tikhomirova, E.E. (2003). Depositional environments in the Eastern Ocean Paratethys in the Oligocene-early Miocene. Vestnik Moskovskogo universiteta. Ser. Geologiya, (6), 12—19 (in Russian).

Valyaev, B.M., & Titkov, H.A. (1985). About methane genesis in natural gases (according carbon and hydrogen isotopic composition). Doklady AN SSSR, 281(1), 146—150 (in Russian).

Valyaev, B.M., & Dremyn, I.S. (2015). Degassing of the Earth and nature of the process oil-gas accumulation (isotopic-geochemical and geodynamic aspects). Geologiya i poleznyye iskopayemyye Mirovogo okeana, 2(40), 33—49 (in Russian).

Gerasimov, M.E., Bondarchuk, G.K., & Yudin, V.V. (2008). Geodynamic and tectonic of Azov-Black Sea region. Report of the VII International Conference «Crimea 2007»: Geodynamics, tectonic and fluid-dynamic oil and gas bearing regions. Simferopol (pp. 115—150) (in Russian).

Dmitriyevskiy, A.N., & Valyayev, B.M. (Eds.). (2011). Degassing of the Earth and genesis of Oil and Gas Fields. Moscow: GEOS, 504 p. (in Russian).

Dudik, O.M., Dudik, S.O., Ivanov, V.G., & Chupryna, I.S. (2010). Petroliterous near Kerch shelf of the Black Sea after results of complex geochemical modelling. Mineral'ni resursy Ukrayiny, (3), 41—47 (in Ukrainian).

Yegorov, V.N., Artemov, Y.G., & Gulin, S.B. (2011). Methane seeps in the Black Sea: Environment-forming and ecological role. Sevastopol: Ekosi-Gidrofizika, 404 p. (in Russian).

Ivanov, M.K., Konyuchov, A.I., & Kulchitsky, L.M. (1989). Mud volcanoes in deep part of the Black Sea. Vestnik Moskovskogo universiteta. Ser. Geologiya, (3), 48—54 (in Russian).

Kolodiy, V.V. (Ed.). (2004). Carpathian Petroliferous Province. Lviv-Kyiv: Ukrainian Publishing Center, 388 p. (in Ukrainian).

Kokh, S.N., Novikova, S.A., Sokol, E.V., Melenevskiy, V.I., & Maslakov, N.A. (2015). The present-forming system of the Obruchev Knoll (the Bulganak mud volcano centre, the Kerch Peninsula). Geologiya i poleznyye iskopayemyye Mirovogo okeana, (2), 123—146 (in Russian).

Kruglakova, R.P., Kruglakova, M.V., & Shevtsova, N.T. (2009). Geological-geochemical characterization of natural hydrocarbon shows in the Black Sea. Geologiya i poleznyye iskopayemyye Mirovogo okeana, (1), 37—51 (in Russian).

Kudelskiy, A.V. (2017). Underground hydrosphere and geofluids of the Earth’s crust and upper mantle. Geofizicheskiy zhurnal 39 (5), 3—26. https://doi.org/10.24028/gzh.0203-3100.v39i5.2017.112337 (in Russian).

Kutas, R.I. (2003). Analysis of thermomechanic models of the Black Sea sedimentary evolution. Geofizicheskiy zhurnal, 25(2), 36—47 (in Russian).

Kutas, R.I. (2011). Geothermal sections of the Earth’s crust and the upper mantle of the Black Sea and its northern franking. Geofizicheskiy zhurnal, 33(6), 1—18. https://doi.org/10.24028/gzh.0203-3100.v33i6.2011.116792 (in Russian).

Kutas, R.I. (2010). Geothermal conditions of the Black Sea basin and its flanking. Geo¬fi¬¬zi¬cheskiy zhurnal, 32(6), 135—158. https://doi.org/10. 24028/gzh.0203-3100.v3216.2010.117453 (in Rus¬sian).

Kutas, R.I. (2009). Method for determination of gas hydrates content in near sea bottom sediment. Patent for invention № 89104 of 25.12.2009 (in Ukrainian).

Kutas, R.I. (1996). Thermodynamic conditions of gas hydrates existence in sediments of the Black Sea. Dopovidi NAN Ukraine, (4), 103—108 (in Ukrainian).

Kutas, R.I., Kravchuk, O.P., & Bevzyuk, M.I. (2005). Gas hydrates diagnostics in near bottom sedimentary layer of the Black Sea by results of their heat conductivity in situ measurement. Geofizicheskiy zhurnal, 24(5), 235—244 (in Russian).

Kutas, R.I., Kravchuk, O.P., Bevzyuk, M.I., & Stakhova, L.I. (2007). Results of geothermal investigations in the northern part of the Black Sea. Geofizicheskiy zhurnal, 29(4), 49—65 (in Russian).

Kutas, R.I., Tsvyashchenko, V.A., Kobolev, V.P., Kravchuk, O.P., & Bevzyuk, M.I. (1996). Geothermal aspects gas hydrat formation in the Black Sea depression. Geofizicheskiy zhurnal, 18(3), 20—27 (in Russian).

Lein, A.Yu., Ivanov, M.V., & Pimenov, N.V. (2002). Genesis of methane in cold methane seeps in the Dniepercanyon. Doklady RAN, 387(2), 242—244 (in Russian).

Lopatin, N.V. (1971). Temperature and geological time as factors of coalification. Izvestia AN SSSR. Ser. Geologicheskaya, (3), 95—106 (in Russian).

Lukin, A.E. (2003). Isotopic-geochemical indications carbonic and hydrocarbonic degassin. Heolohichnyy zhurnal, (1), 59—73 (in Russian).

Lukin, A.E. (2008). The role of gas hydrate formation in the formation of oil and gas basins: Collection of reports of the VII International conference «Crimea-2007». Geodynamics, tectonics and fluid dynamics of oil and gas regions of Ukraine. Simferopol (pp. 16—49) (in Russian).

Lukin, A.E. (2009). Native-metal micro- and nano-inclusions in the formations of oil and gas basins — as tracers of super-deep fluids. Geo¬fizicheskiy zhurnal, 31(2), 61—92 (in Russian).

Lukin, A.E., Dontsov, V.V., & Savinyh, Yu.V. (2008). The basic factor of intensive hydrocarbons accumulation zones within South-Vietnam shelf and outlooks for such zones prospecting in the Black Sea: Collection of reports of the VII International conference «Crimea-2007». Geodynamics, tectonics and fluid dynamics of oil and gas regions of Ukraine. Simferopol (pp. 50—79) (in Russian).

Rusakov, O.M., & Kutas, R.I. (2014). Fata morgana of biogenic doctrine of hydrocarbons in the Black Sea. Geofizicheskiy zhurnal, 36(2), 3—17. https://doi.org/10.24028/gzh.0203-3100.v36i2.2014.116113 (in Russian).

Stadnitskaya, A.N., & Belenkaya, I.Yu. (2000). Composition and origin of hydrocarbon gases and their influence on diagenetic carbonate formation (Sorokin trough, NE part of the Black Sea). In Geology of the Black and Azov Sea (pp. 155—163). Kiev: Hnosis (in Russian).

Starostenko, V.I., Rusakov, O.M., Pashkevich, I.K., Kutas, R.I., Makarenko, I.B., Legostaeva, O.V., Lebed, T.V., & Savchenko, A.S. (2015). Inhomogeneity of deep lithosphere structure of the Black Sea according to a comprehensive analysis of geophysical fields. Geofizicheskiy zhurnal, 37(2), 3—28. doi:org/10.24028/gzh.0203-3100.v37i2.2015.111298 (in Russian).

Tugolesov, D.A., Gorshkov, A.S., Meysner, L.B., Solovyev, V.V., & Khakhalev, E.M. (1985). Tectonics of Mesozoic-Cenozoic deposits of the Black Sea basin. Moscow: Nedra, 216 p. (in Russian).

Khryashchevskaya, O.I., Stovba, S.N., & Popadyuk, I.V. (2009). Stratigraphic basis of geological-geophysical studs of the Odessa shelf on northern part of the Black Sea: state problems and the ways of their solution. Geofizicheskiy zhurnal, 31(3), 17—31 (in Russian).

Shestopalov, V.M., Lukin, A.E., Zgonnik, V.A., Makarenko, A.N., Larin, N.V., & Bohuslavskiy, A.S. (2018). Essays on Earth degassing. Kiev: Ed. of the Institute of Geological Sciences of Ukraine, 632 p. (in Russian).

Shnyukov, Ye.F. (1999). Mud volcanism the Black Sea. Heolohichnyy zhurnal, (2), 38—47 (in Russian).

Shnyukov, Ye.F. (2016). Ore-forming fluid mineralization of mud volcanoes of the Azov-Black Sea region. Kiev: Logos, 196 p. (in Russian).

Shnyukov, Ye.F., Pasynkov, A.A., Kleshchen¬ko, S.A., Kobolev, V.P., Lyubitskiy, A.A., & Zakharov, Z.G. (1999). Gas springs on the floor of the Black Sea. Kiev: Hnosis, 133 p. (in Russian).

Shnyukov, Ye.F., Stupina, L.V., Paryshev, A.A., Netrebskaya, E.Ya., Maslakov, N.A., Inozemtsev, Yu.I., Kruglyakova, R.P., Andreev, V.M., & Gusakov, Yu.N. (2015). Mud volcanoes of the Black Sea (catalog). Kiev: Logos, 259 p. (in Russian).

Bahr, A., Pape, T., Bohrmann, G., Mazzini, A., Haeckek, M., Ritz, A., & Ivanov, M. (2007). Authigenic carbonate precipitates from the NE Black Sea: a mineralogical, geochemical and lipid biomarker study. International Journal of Earth Sciences, 98 (3), 677—695. doi:10.1007/s00531-007-0264-1.

Blinova, V.N., Ivanov, M.K., & Mohrmann, G. (2003). Hydrocarbon gases in deposits from mud volcanoes in the Sorokin Trough, North Eastern Black Sea. Geo-Marine Letters, 23(3-4), 250—257. doi: 10.1007/s00367-003-0148-8.

Bohrmann, G., Ivanov, M., Foucher, J-P., Spiess, V., Bialas, J., Greinert, J., Weinrebe, W., Abegg, F., Aloisi, G., Artemov, Y., Blinova, V., Drews, M., Heidersdorf, F., Krabbenhöft, A., Klaucke, I., Krastel, S., Leder, T., Polikarpov, I., Saburova, M., Schmal, O., Seifert, R., Volkonskaya, A., & Zillmer, M. (2003). Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes. Geo-Marine Letters, 23, 239—249. doi: 10.1007/s00367-003-0157-7.

Dimitrov, L.I. (2002). Mud volcanoes — the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59, 49—76. https://doi.org/10.1016/S0012-8252(02)00069-7.

Finetti, I., Bricchi, G., Del Ben, A., Pipan, M., & Xuan, Z. (1988). Geophysical study of the Black Sea. Bollettino di Geofisica Teorica ed Applicata, XXX(117-118), 197—324.

Feseker, T., Pape, T., Wallman, K., Klapp, G., Schmidt-Schierhsm, F., & Bohrman, G. (2009). The thermal structure of the Dvurechenskii mud volcano and its implication for gas hydrate stability and eruption dynamics. Marine Geology and Petroleum, 29, 2—12. doi:10.1016/j.marpetgeo.2009.01.021.

Ivanov, M.K., & Lein, A.Yu. (2006). Fractionation of stable isotopes of carbon and sulfur during biological processes in the Black Sea. In L.N. Neretin (Ed.), Past and present water column anoxia (pp. 373—417). Berlin, Heidelberg, Dordrecht, New York City: Springer.

Ivanov, M.K., Limonov, A.F., & van Weering, T.C.E. (1996). Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanoes. Marine geology, 132(1-4), 253—271. https://doi.org/10.1016/0025-3227(96)00165-X.

Holzner, C.P., McGnnis, D.F., Schubert, C.J., Kirfer, D.M., & Imboden, D.M. (2007). Noble gas anomalies related to high-intensity methane gas seeps in the Black Sea. Earth and Planetary Science Letters, 265(3-4), 396—409. doi: 10.1016/j. epsl.2007.10.029.

Kazmin, V.C., Schreider, A.A., & Bulychev, A.A. (2000). Early stages of evolution of the Black Sea. In Tectonics and magmatism in Turkey and the Surrounding area (Vol. 173, pp. 235—249). Geol. Soc., London, Spec. Publ.

Krastel, S., Spiess, V., Ivanov, M.K., Weinrebe, W., Bohrmann, G., Shashkin, P. & Heidersdorf, F. (2003). Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea. Geo-Marine Letters, 23, 230—238. doi: 10.1007/s00367-003-0143-0.

Kruglyakova, R.P., Byakov, Y.A., Kruglyakova, M.V., Chalenko, L.A. & Shevtsova, N.T. (2004). Natural oil and gas seeps on the Black Sea Floor. Geo-Marine Letters, 24, 150—162. https://doi.org/10.1007/s00367-004-0171-4.

Kutas, R.I. (2002). Heat flow, fault zones and gas seeps in the Black Sea: VII International conference on gas in marine sediments and natural marine hydrocarbon seepage in the world oceans with applications to the Caspian Sea. Oktober 7—12, 2002. Baku: Nafta press, 111 p.

Kutas, R.I., Rusakov, O.M., & Kobolev, V.P. (2002). Gas seeps in northwestern Black Sea: geological and geophysical studies. Russian geology and geophysics, 43(7), 698—705.

Kutas, R.I., Paliy, S.I., & Rusakov, O.M. (2004). Deep faults, heat flow and gas leakage in the northern Black Sea. Geo Marine Letters, 24, 163—168. doi:10.1007/s00367-004-0172-3.

Kutas, R., & Poort, J. (2008). Regional and local geothermal conditions in the northern Black Sea. Intern. International Journal of Earth Sciences, 97, 353—363. https://doi.org/10.1007/s00531-007-0216-9

Mazzini, A., Ivanov, MC, Parnel, J., Stadnitskaia, A., Cronin, BT., Poludetkina, E., Mazurenko, L., & van Weering, T.C.E. (2004). Methane — related antigenic carbonates from the Black Sea: geochemical characterization and relation to seeping fluids. Marine Geology, 212, 153—168. https://doi.org/10.1016/j.margeo.2004.08.001.

Nikishin, A., Korotaev, M., Ershov, V., & Brunet, М. (2003). The Black Sea basin: tectonic history and Neogene-Quaternary rapid subsidence modeling. Sedimentary Geology, 156, 149—168. https://doi.org/10.1016/S0037-0738(02)00286-5.

Nikishin, A.M., Okay, A., Tüysüz, O., Demirer, A., Warnier, M., Amelin, N. & Petrov, E. (2014). The Black Sea basins structure and history. New model based on new deep penetration regional seismic data. Part 1: Basin structure and fill. Marine and Petroleum Geology, 59, 636—655. https://doi.org/10.1016/j.marpetgeo.2014.08.017.

Okay, A.I., & Nikishin, A.M. (2015). Tectonic evolution of the southern margin of Lourasia in the Black Sea region. International Geology Review, 57, 1051—1076. https://doi.org/10.1080/00206814.2015.1010609.

Okay, A.I., Şengör, A.M.C. & Görür, N. (1994). Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology, 22(3), 267—270. https://doi.org/10.1130/0091-7613(1994)022<0267:KHOTOO>2.3.CO;2.

Robinson, A.G., Rudat, J.H., Banks, C.J. & Wiles, R.L.F. (1996). Petroleum geology of the Black Sea. Marine and Petroleum Geology, 13(2), 195—223. doi:10.1016/0264-8-172(95)00042-9.

Rusakov, O.M., & Kutas, R.I. (2018). Mantle origin of methane in the Black Sea. Geofizicheskiy zhurnal, 40(5), 191—207. doi:10.24028/gzh.0203-3100.v40i5.2018.147482.

Rusakov, O.M., & Pashkevich, I.K. (2017). The decisive role of the crystalline crust faults in the Black Sea opening. Geofizicheskiy zhurnal, 39(1), 3—16. https://doi.org/10.24028/gzh.0203-3100.v39i1.2017.93998.

Rusanov, I.I., Lein, A.Yu., Pimenov, N.L., Yusupov, S.K., & Ivanov, N.V. (2002). The Biogeochemical Cycle of Methane on the Northwestern Shelf of the Black Sea. Microbiology, 71(4), 479—487. doi:10.1023/A:1019862014508.

Scott, C.L., Shillington, D.J., Minshull, T.A., Edwards, R.A., Brown, P.J. & White, N.J. (2009). Wide-engle seismic data reveal extensive overpressures in the Eastern Black Sea Basin. Geophysical Journal International, 178(2), 1145—1163. https://doi.org/10.1111/j.1365-246X.2009.04215.x.

Sheremet, Ye., Sosson, M., Ratzon, G., Sydorenko, G., Voitsiskiy, Z., Yegorova, T., Gintov, O., & Murovskaya, F. (2016). An offshore — on land transect across the north-eastern Black Sea basin (Crimea margin): Evidence of Paleocene to Pliocene two stage compression. Tectonophysics, 688, 84—100. doi:org/10.1016/j.tecto.2016.09.015.

Shillington, D.J., Scott, C.L., Minshull, T.A., Edwards, R.A., Brown, P.J., & White, N. (2009). Abrupt transition from magma-starved to magma rich rifting in the eastern Black Sea. Geology, 37, 7—10. doi:10.1130/G25302A.1.

Shillington, D.J., White, N., Minshull, T.A., Edwards, G.R.H., Jones, S.M., Edwards, R.A. & Scott, C.L. (2008). Cenozoic evolution of the eastern Black Sea: a test of depth-dependant stretching models. Earth and Planetary Science Letters, 265(3-4), 360—378. https://doi.org/10.1016/j.epsl.2007.10.033.

Spadini, G., Robinson, A. & Cloetingh, S. (1996). Western versus eastern Black Sea tectonic evolution: pre-rift lithospheric controls on basin formation. Tectonophysics, 266, 139—154.

Stadnitskaia, A., Ivanov, M.K., Poludetkina, E.N., Kreulen, R., & van Weering, T.C.E. (2007). Sources of hydrocarbon gases in mud volcanoes from the Sorokin Trough, NE Black Sea, based on molecular and carbon isotopic compositions. Marine and Petroleum Geology, 25(10), 1040—1057. doi:10.1016/j.marpetgeo.2007.08.001.

Starostenko, V.I., Rusakov, O.M., Shnuykov, E.F., Kobolev, V.P., & Kutas, R.I. (2010). Methane in the northern Black Sea: characterization of its geomorphological and geological environments. In M. Sosson, N. Kaymakci, R. Stephenson, F. Bergerat & V. Starostenko (Eds.), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform (Vol. 340, pp. 57—75). Geol. Soc., London, Spec. Publ.

Waples, D.W. (1980). Time and Temperature in Petroleum Formation: Application of Lopatin’s Method to Petroleum Exploration. AAPG Bulletin, 64(6), 916—926. https://doi.org/10.1306/2F9193D2-16CE-11D7-8645000102C1865D.

Woodside, J.M., Ivanov, M.K., Limonov, A.F. (1996). Neotectonics and fluid flow through seafloor sediments in the Eastern Mediterranean and Black Seas. Part II: Black Sea. Preliminary results of geological and geophysical investigations during the ANAXIPROBE/TTR ¾ 6 cruise of R/v Gelendzik, July¾August, UNESSO (pp. 129—226).

Zonenshain, L.P. & le Pichon, X. (1986). Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics, 123(1-4), 181—211. https://doi.org/10.1016/0040-1951(86)90197-6.

##submission.downloads##

Опубліковано

2020-11-02

Як цитувати

Kutas, R. (2020). Геотектонічні та геотермічні умови зон флюїдного і газового розвантаження в Чорному морі. Геофізичний журнал, 42(5), 16–52. https://doi.org/10.24028/gzh.0203-3100.v42i5.2020.215070

Номер

Розділ

Статті