Про геологічний вуглеводень

Автор(и)

  • V.M. Shestopalov Науково-інженерний центр радіогідрогеоекологічних полігонних досліджень НАН України, Інститут геологічних наук НАН України, Україна

DOI:

https://doi.org/10.24028/gzh.0203-3100.v42i6.2020.222278

Ключові слова:

геологічний вторинний і первинний водень, тепловий потік, геореактор, дегазація тритію, глибинні розломи, самородні метали, родовища водню

Анотація

Утворення геологічного (абіогенного) водню у надрах пов’язують з двома групами гіпотез: формуванням вторинного водню в земній корі і верхній мантії у результаті його виділення з води і деяких мінералів, а також виходу первинного водню з ядра і нижньої мантії, накопиченого у надрах під час акреції планети. У зв’язку з відсутністю прямого доступу до значних глибин Землі доведення правомірності існування первинного водню у глибоких надрах є дуже складною задачею. Непрямими підтвердженнями єдності процесів у геосферах є уявлення про Землю як єдину відкриту систему, що сама розвивається, з виділенням теплової енергії у всіх її геосферах, включаючи ядро. В цій системі існує крізьгеосферне тепломасоперенесення, яке добре узгоджується з уявленнями щодо плюмтектоніки. Додатковим підтвердженням генерації теплової енергії на великих глибинах можуть бути експерименти з геонейтріно, які розвиваються, і виявлення дегазації тритію з жерл деяких вулканів і в глибинних шарах вулканічних озер. Свідченням періодичного потужного виходу глибинного водню з надр є результати досліджень В.Л. Сивороткіна, А. Джилата і А. Вола, А.Ю. Ретеюма та інших. А результати досліджень стану і змін мінерального середовища, а також умов утворення глибинного розташування багатьох відомих нафтогазових і рудних корисних копалень, алмазів свідчать про вирішальне значення виключно відновлюваних флюїдів у їх формуванні. Знахідки самородних металів і зокрема алюмінію у вміщуючих породах є прямим свідченням відновлюванного (суттєво водневого) середовища у період їх утворення. Перші термодинамічні розрахунки підтвердили можливість впливу первинного водню на олівін з наступним утворенням води і серпентину. Спроби визначення загального водневого потенціалу у нафтогазовидобувних басейнах на прикладі вуглеводневих ресурсів Дніпровсько-Донецької Западини, з одного боку, свідчать про значний ресурсний потенціал водню, а з іншого, у зв’язку із великим резервом нерозвіданих запасів вуглеводнів визначають доцільність сумісних пошукових робіт на вуглеводні і водень. У зв’язку з відсутністю 100 % доведення гіпотези щодо первинного водню і невизначеності особливостей його можливої дегазації дослідження з пошуків родовищ водню слід проводити у зонах розломів, які можуть забезпечувати висхідний транспорт значних об’ємів водню у відповідності з будь якою групою згаданих вище гіпотез. Це повинні бути потужні глибинні розломи, до яких тяжіють відповідні ємності для проміжного накопичення водню, що перекриваються слабо проникними пластами, спроможними сповільнити висхідну дегазацію водню.

Посилання

Aryasova, O.V., & Khazan, Ya.M. (2018). From global tectonics to global geodynamics. Geofizicheskiy zhurnal, 40(5), 71-97. https://doi.org/10.24028/gzh.0203-3100.v40i5.2018.147475 (in Russian).

Aryasova, O.V., & Khazan, Ya.M. (2013). Interaction of mantle convection with the lithosphere and the origin of kimberlites. Geofizicheskiy zhurnal, 35(5), 150-171. https://doi.org/10.24028/gzh.0203-3100.v35i5.2013.116445 (in Russian).

Baranov, M.I. (2010). Approximate calculation of the Earth’s magnetic field. Elektrotekhnika i elektronika, 6, 46-48 (in Russian).

Bezborodov, A.A., Gusev, N.V., Suslov, I.R., & Folomeev, V.I. (2008). Natural Nuclear Reactor in the Earth's Interior. Izvestiya vuzov. Yadernaya energetika, (1), 30-40 (in Russian).

Bezrukov, L.B., Zavarzina, V.P., Kurlovich, A.S., Lubsandarzhiev, B.K., Mezhokh, A.K., Morgalyuk, V.P., & Sinev, V.V. (2018). Geoneutrino and heat flow of the Earth. Fizika elementarnykh chastits i atomnogo yadra, 49(4), 1191-1199.

Belov, S.V. (2011). Hydrogen degassing of the planet: analysis of volcanic structures. Oko planet. Retrieved from https://oko-planet.su/phenomen/phenomenscience/93242-vodo-rodnaya-degazaciya-planety-analiz-vulkanicheskih-struktur.html (in Russian).

Bogdanov, Yu.A., Gurvich, E.G., Lein, A.Yu., Sagalevich, A.M., Novikov, G.V., Peresypkin, V.I., Bortnikov, N.S., & Vikent’ev, I.V. (2000). Hyd-rothermal ore manifestations of Logachev and Rainbow fields (Mid-Atlantic Ridge) - a new type of ocean rift hydrothermal deposits. Rossiyskiy zhurnal nauk o Zemle, 2(4). Retrieved from http://geo.web.ru/db/msg.html?mid=1162931&uri=part11.htm (in Russian).

Vadkovsky, V.N. (2012). Subvertical congestions of the earthquake hypocenters - seismic «nails». Vestnik ONZ RAN, 4, NZ1001. https://doi.org/10.2205/2012NZ000110 (in Russian).

Vadkovsky, V.N. (1996). Nature and mechanism of seismic «nails»: Abstracts of the conference «Lomonosov Readings 1996» (pp. 63-64). Moscow: Moscow University Publ. House (in Russian).

Gordienko, V.V. (2020). Hydrogen sources for hydrocarbon fields: Abstracts of the 8th Kudryavtsev Readings. Moscow: Publ. of the Central Geophysical Expedition (in Russian).

Gordienko, V.V. (2017). Thermal processes, geo-dynamics, deposits. 285 p. Retrieved from https://ivangord2000.wixsite.com/tectonos (in Russian).

Gordienko, V.V., Gordienko, I.V., Gordienko, L.Ya., Zavgorodnyaya, O.V., Logvinov, I.M., & Tarasov, V.N. (2020). Zones of recent activation of Ukraine. Geofizicheskiy zhurnal, 42(2), 29-52. https://doi.org/10.24028/gzh.0203-3100.v42i2.2020.201740 (in Russian).

Gufeld, I. L. (2012). Geological consequences of amorphization of the lithosphere and upper mantle structures, caused by hydrogen degassing. Geodinamika i tektonofizika, 3(4), 417-435. https://doi.org/10.5800/GT-2012-3-4-0083 (in Russian).

Gufeld, I.L. (2013). On deep degassing and structure of lithosphere and upper mantle. Glubinnaya neft, 1(2), 171-188 (in Russian).

Dobretsov, N. L. (1997). Mantle superplumes as the cause of the main geological periodicity and global rearrangements. Doklady RAN, 357(6), 797-800 (in Russian).

Zhitnuev, N.S. (2012). Transmantle fluid flows and the origin of plumes, Doklady RAN, 444(1), 50-55 (in Russian).

Ivanov, A.V. (2010). Deep geodynamics: process boundaries according to geochemical and petrological data. Geodinamika i tektonofizika, 1(1), 87-102. https://doi.org/10.5800/GT-2010-1-1-0008 (in Russian).

Kirdyashkin, A.A., Dobretsov, N.L., Kirdyashkin, A.G. (2008). Heat and mass transfer in a thermochemical plume under an oceanic plate far from the mid-ocean ridge axis. Fizika Zemli, (6), 17-30 (in Russian).

Kirkinsky, V.A., Novikov, Y.A. (2000). Computer modelling of hydrogen nuclear reactions in crystalline substances and the problem of nucleosynthesis in geochemical processes. Proceedings of the annual seminar on experimental mineralogy, petrology and geochemistry. GEOKHI RAS, 20-21 April 1999. Vestnik OGGGGN RAN, 2(2). Retrieved from http://geo.web.ru/conf/khitariada/2-2000.2/planet_3.pdf (in Russian).

Krivitskiy, V.A. (2016). Paradoxes of Transmutation and Earth Development. Unobvious Evidence. Moscow: Akademika, 239 p. (in Russian).

Kuzmin, Yu.O. (2012). Deformation autowaves in fault zones. Fizika Zemli, (1), 3-19 (in Russian).

Kopnichev, Yu.F. (1997). Variations of transverse wave absorption field prior to the strong earthquakes in the Northern Tien Shan. Doklady RAN, 356(4), 528-532 (in Russian).

Larin, V.N. (2005). Our Earth (origin, composition, structure and evolution of primordially hydridic Earth). Moscow: Agar, 247 p. (in Russian).

Letnikov, F.A. (2001). Ultradeep fluid systems of the Earth and problems of ore formation. Geologiya rudnykh mestorozhdeniy, 43(4), 291-307 (in Russian).

Letnikov, F.A. (2015). Deep fluids of the continental lithosphere. Proceedings of the All-Russia conference «Fluid regime of endogenic processes in the continental lithosphere» (pp. 11-22). Irkutsk: Institute of the Earth’s Crust SB RAS (in Russian).

Lukin, A.E. (2000). Injections of deep hydrocarbon-polymineral substance in deep-lying rocks of oil-and-gas basins: nature, applied and epistemological significance. Heolohichnyy zhurnal, (2), 7-21 (in Russian).

Lukin, A.E. (2006). Native metals and carbides - indicators of composition of deep geospheres. Heolohichnyy zhurnal, (4), 17-46 (in Russian).

Lukin, A.E. (2009). Native-metal micro- and nano-inclusions in the formations of oil-and-gas basins - as tracers of super-deep fluids. Geofizicheskiy zhurnal, 31(2), 61-92 (in Russian).

Lukin, A.E. (2015). The system «superplume - deep-lying segments of oil-and-gas basins» - inexhaustible source of hydrocarbons. Heolohichnyy zhurnal, (2), 7-20 (in Russian).

Lukin, A.E., & Shestopalov, V.M. (2018). From new geological paradigm to the problems of regional geological geophysical studies. Geofizicheskiy zhurnal, 40(4), 3-72. https://doi.org/10.24028/gzh.0203-3100.v40i4.2018.140610 (in Russian).

Makarenko, A.N. (2014). Cosmic source of energy in the interior of the Earth and planets. Saarbrücken: LAP LAMBERT Academic Publishing, 199 p. Retri eved from http://planetary-cosmic-heater.inf.ua/files/makarenko-978-3-659- 64215-9.pdf (in Russian).

Marakushev, A.A. (1999). Origin of the Earth and nature of its endogenous activity. Moscow: Nauka, 253 p. (in Russian).

Mervozedinov, D.R., Batrakov, G.F., & Lukashin, I.F. (2005). Nuclear terrorism and possible natural radioisotope anomalies. In Collected works of NANU «Systems of environment control» (pp. 220-228). Sevastopol: Publ. by the Marine Hydrophysical Institute (in Russian).

Molchanov, V.I. (1981). Hydrogen generation in lithogenesis. Novosibirsk: Nauka, 142 p. (in Russian).

Novgorodova, M.I. (1983). Native metals in hydrothermal ores. Moscow: Nauka, 287 p. (in Russian).

Oleynikov, B.V. (1981). Metallization of magmatic melts and its petrological and ore-genetic consequences. In Native minerals formation in magmatic process (pp. 5-11). Yakutsk: Yakutsk bureau of SB AS USSR (in Russian).

Osyka, D.G (1981). Fluid regime in seismically active areas. Moscow: Nauka, 203 p. (in Russian).

Perchuk, L.L. (1971). Fluids in the lower crust and upper mantle of the Earth. Vestnik Moskovskogo Universiteta. Ser. 4. Geologiya, (4), 25-35 (in Russian).

Petrov, Yu.V., Nazarov, A.I., Onegin, M.S., Petrov, V.Yu., Sakhnovsky, E.G. (2005). Computation of neutronics of fresh core for Oklo natural nuclear reactor. Atomnaya Energiya, 98(4), 306-316 (in Russian).

Portnov, A.V. (2010). Volcanoes - natural hyd-rogen fields. Promyshlennye vedomosti, (10-12). Retrieved from https://www.promved.ru/articles/article.phtml?id=2015 (in Russian).

Potseluyev, A.A. (2014). Noble-metal ore mineralization in hydrothermal uranium and rare metal deposits in the Сentral Asia. Tomsk: STT Publishing, 282 p. (in Russian)

Rodkin, M.V., & Punanova, S.A. (2015). Assessment of the influence of crustal processes on the formation of microelement composition of caustobiolites: Abstracts of the 4th Kudryavtsev Readings. Moscow: Publ. of the Central Geophysical Expedition (in Russian).

Reteyum, A.Yu. (2018). Deep degassing as the leading endogenous process. Aktualnye problemy nefti i gaza, (4), 7 p. (in Russian).

Ryabchikov, I.D. (2003). High content of nickel in the mantle magmas as evidence of substance migration from the Earth’s core. Doklady RAN, 389(5), 677-680 (in Russian).

Semenenko N.P. (1990). Oxygen-hydrogen mo-del of the Earth. Kiev: Naukova Dumka, 240p. (in Russian).

Sergeev, V.N. (2015). Distribution of radioactive elements that determine radiogenic heat of the Earth in its interior and geoneutrino. In Collected works of IDG RAS «Dynamic processes in geosheres» (Is. 7, pp. 193-199). Moscow: GEOS (in Russian).

Sklyarov, A.Yu. (2012). Sensational history of the Earth. Moscow: Veche Publishing. 256 p. (in Russian).

Starostenko, V.I., Lukin, A.E., Tsvetkova, T.A., Zaets, L.N., Dontsov, V.V. & Savinykh, Yu.V. (2011). On the participation of super-deep fluids in naftidogenesis (according to the study of the unique White Tiger oil field). Geofizicheskiy zhurnal, 33(4), 3-32. https://doi.org/10.24028/gzh.0203-3100.v33i4.2011.116893 (in Russian).

Starostenko, V.I., Lukin, A.E., Tsvetkova, T.A. & Shumlyanskaya, A.A. (2014). Geofluids and present-day manifestation of activation of the Ingul megablock of the Ukrainian Shield. Geofizicheskiy zhurnal, 36(5), 3-25. https://doi.org/10.24028/gzh.0203-3100.v36i5.2014.111567 (in Russian).

Sukhanova, N.I., Trofimov, S.Y., Polyanskaya, L.M., Larin, N.V., & Larin, V.N. (2013). Chan-ges in the humus status and the structure of the microbial biomass in hydrogen exhalation places. Pochvovedenie, (2), 1-11. https://doi.org/10.7868/S0032180X13020147 (in Russian).

Syvorotkin V.L. (2002). Deep Earth degassing and global catastrophes. Moscow: Geoinform-tsentr, 250 p. (in Russian).

Syvorotkin, V.L. (2018). Catastrophic epoch of hydrogen degassing. Redkie Zemli, (9), 32-39 (in Russian).

Terez, E.I., & Terez, I.E. (2015). Fusion reactions as the main source of the internal energy of the Earth. Vestnik RAN, 85(3), 240-246 (in Russian).

Timurziev, A.I. (2013). Laws of spatially-stratigraphic allocation of oil-and-gas accumulations within the West Siberian oil-and-gas bearing province on the basis of ideas about their deep origin, the young age and Middle-Late Neogene time of formation. Glubinnaya neft, 1(11), 1720-1759 (in Russian).

Trubitsyn, V.P. & Kharybin, E.V. (2010). Thermochemical mantle plumes. Doklady RAN, 435(5), 683-685 (in Russian).

Tsvetkova, T.A., Bugaenko, I.V., Zayets, A.N. (2017). Seismic visualization of plumes and super-deep fluids in mantle under Ukraine. Geofizicheskiy zhurnal, 39(4), 42-54. https://doi.org/10.24028/gzh.0203-3100.v39i4.2017.107506 (in Russian).

Khain, V.E. (2010). Development of actual global model of the Earth’s dynamics: basic principles. Geologiya i Geofizika, 51(6), 753-760 (in Russian).

Chakmazyan, K.V. (2016). Changes in microbial biomass structure of soils under conditions of natural accumulation and emission of hydrogen: Candidate’s thesis. Moscow, 113 p. (in Russian).

Shevchenko, V.I., Arefiev, S.S. & Lukk, A.A. (2011). Subvertical clusters of earthquake hypocenters unrelated to the tectonic structure of the Earth’s crust. Fizika Zemli, (4), 16-38 (in Russian).

Shestopalov, V.M., Lukin, A. Yu., Zgonik, V.A., Makarenko, A.N., Larin, N.V. & Bohuslavsky, A.S. (2018). Essays on Earth degassing. Kiev, 632 p. (in Russian).

Shestopalov, V.M., & Kolyabina, I.L. (2019). Preliminary results of analysis of possibility for serpentinization of olivine in the absence of water: Abstracts of scientific conference «Achievements and development of geological science in Ukraine» (Vol. 1, pp. 120-121). Kyiv: Publ. of the Institute of Geochemistry, Mineralogy and Ore Formation (in Ukrainian).

Shukolyukov, Y.A. (1997). Anomalous xenon of the Earth. Sorosovskiy obrazovatelnyi zhurnal, (9), 63-70 (in Russian).

Yurkova, R.M. (2002). Rise and transformation of mantle hydrocarbon fluids caused by formation of the ophiolite diaper: Proceedings of the conference «Degassing of the Earth: Geodynamics, Geofluids, Oil-and-Gas» (pp. 278-280). Moscow: GEOS (in Russian)

Yurkova, R.M., Sloninskaya, M.L., Dainyak, B.A., & Dritz, V.A. (1982). Hydrogen and methane in serpentines of various genetic types (using Sakhalin and Koryak Highlands as examples). Doklady AN SSSR, 263(2), 420-425 (in Russian).

Adler, S.L. (2009). Can the flyby anomaly be attributed to earth-bound dark matter? Physical Review D, 79(2), 3505-3515. https://doi.org/ 10.1103/PhysRevD.79.023505.

Agostini, M., Appel, S., Bellini, G., Benziger, J., Bick, D., Bonfini, G. et al. (2015). Spectroscopy of geo-neutrinos from 2056 days of Borexino data. Physicfl Review D, 92(3), 031101. https://doi.org/10.1103/ PhysRevD.92.031101.

Agostini, M., Altenmьller, K., Appel, S., Atroshchenko, V., Basilico, D., Bellini, G.B. et al. (2020). Comprehensive geoneutrino analysis with Borexino. Physical Review D, 101(1), 012009. https://doi.org/10.1103/PhysRevD.101.012009.

Anderson, D.L (2000). The statistics of helium isotopes along the global spreading ridge system and the central limit theorem. Geophysics Research Letters, 27(16), 2401-2404. https://doi.org/10.1029/1999GL008476.

Anderson, O.L. (2002). The power balance at the core-mantle boundary. Physics of the Earth and Planetary Interiors, 131(1), 1-17. https://doi.org/10.1016/S0031-9201(02)00009-2.

Anderson, D.A. (2009). Energetics of the Earth and the Missing Heat Source Mystery. Mantle Plumes. Retrieved from http://www.mantleplumes.org/Energetics.html.

Araki, T., Enomoto, S., Furuno, K. et al. (2005). Experimental investigation of geologically produced antineutrinos with KamLAND. Nature, 436, 499-503. https://doi.org/10.1038/nature03980.

Barbier, S., Huang, F., Andreani, M., Tao, R., Hao, J., Eleish, A., Prabhu, A., Minhas, O., Fontaine, K., Fox, P., & Daniel, I.A. (2020). Review of H2, CH4, and Hydrocarbon Formation in Experimental Serpentinization Using Network Analysis. Frontiers in Earth Science, 8, 209. https://doi.org/10.3389/feart.2020.00209.

Bellini, G., Ianni, A., Ludhova, L., Mantovani, F., & McDonough, W.F. (2013). Geo-Nentrinos. Progress in Particle and Nuclear Physics, 73, 1-34. https://doi.org/10.1016/j.ppnp.2013.07.001.

Conrad, R., & Seiler, W. (1979). The role of hydrogen bacteria during decomposition of hydrogen by soil. FEMS Microbiology Letters, 6, 143-145.

Cowan, G.A. (1976). Natural Fission Reactor. Scientific American, 235, 36-47.

Davies, J.H., & Davies, D.R. (2009). Earth’s surface heat flux. Solid Earth, 1(1), 5-24. http://dx.doi.org/10.5194/se-1-5-2010.

Deyg, R., Kishore, K., Moorthy, P.N., et al. (1990). Water radiolysis at high temperatures and pressures. Bombay: Bhabha Atomic Research Centre, 27 p.

De Koker, N., Neumann, G.S., & Vicek, V. (2012). Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core. Proceedings of the National Academy of Sciences of USA, 109(11), 4070-4073. http://dx.doi.org/10.1073/pnas.1111841109.

De Meijer, R.J., van der Graaf, E., & Jungmann, K. (2004). Impact and Application: Quest for a nuclear georeactor. Nuclear Physics News, 14(2), 20-25. https://doi.org/10.1080/10506890491034776.

Dye, S.T. (2012). Geoneutrinos and radioactive power of the Erth. Reviews of Geophysics, 50, RG3007. https://doi.org/10.1029/2012RG000400/.

Gando, A., Gando, Y., Ichimura, K., et al. (2011). Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nature Geosciences, 4, 647-651. https://doi.org/10.1038/ngeo1205.

Gando, A., Gando, Y., Hanakago, H., Ikeda, H., Inoue, K. (2013). Reactor on-off Antineutrino Measurements with KamLAND. Physical Review D, 88, 033001. https://doi.org/10.1103/PhysRevD.88.033001.

Gilat, A.L., & Vol, A. (2005). Primordial hydrogen-helium degassing, an overlooked major energy source for internal terrestrial processes. HAIT Journal of Science and Engineering B, 2(1-2), 125-167.

Gilat, A.L., & Vol, A. (2012). Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes. Geoscience Frontiers, 3(6), 911-921. https://doi.org/10.1016/j.gsf.2012.03.009.

Herndon, J.M. (1993). Feasibility of a nuclear fission reactor at the center of the Earth as the energy source for the geomagnetic field. Journal of Geomagnetism and Geoelectricity, 45(5), 423-437. https://doi.org/10.5636/jgg.45.423.

Herndon, J.M. (2003). Nuclear georeactor origin of oceanic basalt 3He/4He, evidence and implications. Proceedings of the National Academy of Sciences of the USA, 100(6), 3047-3050. https: //doi.org/10.1073/pnas.0437778100.

Herndon, J.M. (2009). Uniqueness of Herndon’s Georeactor: Energy Source and Production Mechanism for Earth’s Magnetic Field. Retrieved from https://arxiv.org/abs/0901.4509.

Hernlund, J.W., Thomas, C., & Tackley, P.J. (2005). A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature, 434, 882-886. https://doi.org/10.1038/nature03472.

Holm, N.G., Oze, C., Mousis, O., Waite, J.H., & Guilbert-Lepoutre, A. (2015). Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology, 15(7), 587-600. https://doi.org/10.1089/ast.2014.1188.

Huang, R., Lin, C., Sun, W., Ding, X., Zhan, W., & Zhu, J. (2017). The production of iron oxide during peridotite serpentinization: Influence of pyroxene. Geoscience Frontiers, 8(6), 1311-1321. https://doi.org/10.1016/j.gsf.2017.01.001.

Hollenbach, D.F., & Herndon, J.M. (2001). Deep Earth reactor: Nuclear fission, helium, and the geomagnetic field. Proceedings of the National Academy of Sciences of the USA, 98(20), 11085-11090. https://doi.org/10.1073/pnas.201393998.

Ikuta, D., Ohtani E., Sano-Furakawa A., Shibazaki, Y., Terasaki, H., Yuan L., & Hattori, T. (2019). Interstitial hydrogen atoms in face-centered cubic iron in the Earth’s core. Scientific Reports, 9, 7108. https://doi.org/10.1038/s41598-019-43601-z.

Isaev, E.I., Skorodumova, N.V., Ahuja, R., Vekilov, Yu.K., & Johansson, B. (2007). Dynamic stability of Fe-H in the Earth’s mantle and core regions. Proceedings of the National Academy of Sciences of the USA, 104(22), 9168-9171. https://doi.org/10.1073/pnas.0609701104.

Jaupart, C., Labrosse S., Lucazeau, F., & Mareschal, J. (2007). Temperatures, Heat and Energy in the Mantle of the Earth. In Treatise on Geophysics (Vol. 7, pp. 253-303).

Jiang, S., He, M., Yue, W., Qi, B., & Liu, J. (2007). Observation of 3He and 3H in the volcanic crater lakes: possible evidence for natural nu-clear fusion in deep Earth: 8th International Workshop on Anomalies in Hydrogen/Deuterium Loaded Metals. Sicily, Italy.

Jiang, S., & He, M. (2012). Anomalous Nuclear Reaction in Earth’s Interior: a New Field in Physics Science? Plasma Science and Techno-logy, 14(5), 5438-5441.

Jiang, S., Liu, J., & He, M. (2010). A possible in situ 3H and 3He source in Earth’s interior: an alternative explanation of origin of 3He in deep Earth. Naturwissenschaften, 97(7), 655-662. https://doi.org/10.1007/s00114-010-0681-z.

Jones, V.T., & Pirkle, R.J. (1981). Helium and hydrogen soil gas anomalies associated with deep or active faults: Proc. of the 1981 American Chemical Society Annual Meeting, Atlanta, GA.

Jones, S.E., & Ellsworth, J. (2003). Geo-fusion and Cold Nucleosynthesis: Proc. of Tenth international conference on cold fusion. Cambridge, MA LENR-CANR.org. Retrieved from http://www.lenr-canr.org/acrobat/JonesSEgeofusiona.pdf.

Klein, F., Grozeva, N.G., & Seewald, I.S. (2019). Abiotic methane synthesis and serpentinization in olivine - hosted fluid inclusions. Proceedings of the National Academy of Sciences of the USA, 116(36), 17666-17672. www.pnas.org/cgi/doi/10.1073/pnas.1907871116.

Konn, C., Charlou, J.L., Holm, N.G., & Mousis, O. (2015). The production of Methane, Hydrogen and Organic Compounds in Ultramafic - Hosted Hydrothermal Vents of the Mid-Atlantic Ridge. Astrobiology, 15(5), 381-399. https://doi.org/10.1089/ast.2014.1198.

Kronig, R., de Boer, J., & Korringa, J. (1946). On the internal constitution of the Earth. Physica, 12(5), 245-256. https://doi.org/10.1016/S0031-8914(46)80065-X.

Kuroda, P.K. (1956). On the nuclear Physical Stability of the Uranium Minerals. Journal of Chemical Physics, 25, 781-782. https://doi.org /10.1063/1.1743058.

Lay, T. (2015). Deep Earth Structure: Lower Mantle and D'' Rocks. In G. Schubert (Ed.), Treatise on Geophysics (Vol. 1, pp. 684-723). Oxford: Elsevier. doi:10.1016/B978-0-444-53802-4.00019-1.

Lay, T., Hernlund, J., Garnero, E., & Thorne, M.S. (2006). A post-perovskite lens and D heat flux beneath the Central Pacific. Science, 314, 1272-1276. https://doi.org/10.1126/science.1133280.

Larin, V.N. (1993). Hydridic Earth: The New Geology of Our Primordially Hydrogen-rich Planet. Alberta: Polar Publishing, 247 p.

Leng, W., & Zhong, S. (2008). Controls on plume heat flux and plume excess temperature. Journal of Geophysical Research: Solid Earth, 113(B4), B04408. https://doi.org/10.01029/02007JB005155.

Lin, Li-H., Hall, J., Lippmann-Pipke, J., Ward, J. A., Sherwood Lollar, B., DeFlaun, M., Rothmel, R., Moser, M., Gihring, T.M., Mislowack, B., & Onstott, T.C. (2005). Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochemistry, Geophysics, Geosystems, 6(7), 3-13. https://doi.org/10.1029/2004GC000907.

Lindenfeld, M., Rьmpker, G., Link, K., Koehn, D., & Batte, A. (2012). Fluid-triggered earthquake swarms in the Rwenzori region, East African Rift - Evidence for rift initiation. Tectonophysics, 566-567, 95-104. https://doi.org/10.1016/j.tecto.2012.07.010.

Malvoisin, B., Brantut, N., & Kaczmarek, M. (2017). Control of serpentinisation rate by re-action-induced cracking. Earth and Planetary Science Letters, 476, 143-152. https://doi.org/10.1016/j.epsl.2017.07.042.

Mareschal, J.C., Jaupart, C., Phaneuf, C., & Perry, C. (2012). Geoneutrinos and the energy budget of the Earth. Journal of Geodynamics, 54, 43-54. https://doi.org/10.1016/j.jog.2011. 10.005.

McCollom, T.M., & Bach, W. (2009). Thermodynamic constraints on hydrogen generation during serpentinisation of ultramafic rocks. Geochimica et Cosmochimica Acta, 73(3), 856-875. https://doi.org/10.1016/j.gca.2008.10.032.

McCollom, T.M., & Seewald, L.S. (2013). Serpentinites, hydrogen and life. Elements, 9(2), 129-134. https://doi.org/10.2113/gselements.9.2.129

Meshik, A., & Herndon, J.M. (2001). Deep Earth reaction: Nuclear fission, helium, and the geomagnetic field. Proceedings of the National Academy of Sciences of the USA, 98(20), 11085-11090. https://doi.org/10.1073/pnas. 201393998.

Meshik, A., Hohenberg, C., & Pravdivtseva, O.V. (2004). Record of cycling operation of the natural nuclear reactor in the Oklo/Okelobondo area in Gabon. Physical Review Letters, 93(18), 182-190. https://doi.org/10.1103/PhysRevLett. 93. 182302.

Moody, J.B. (1976). Serpentinization: a review. Lithos, 9(2), 125-138. https://doi.org/10.1016/0024-4937(76)90030-X.

Movel, C. (2003). Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geosciences, 335(10-11), 825-852. https://doi.org/10.1016/j.crte.2003.08.006.

Murphy, C.A. (2016). Hydrogen in the Earth’s Core: Review of the Structural, Elastic and Thermodynamic Properties of Iron-Hydrogen Alloys. In Deep Earth: Physics and Chemistry of the Lower Mantle and Core (pp. 253-264). https://doi.org/10.1002/9781118992487.ch20.

Nivin, V.A. (2019). Occurrence Forms, Composition, Distribution, Origin and Potential Hazard of Natural Hydrogen-Hydrocarbon Gases in Ore Deposits of the Khibiny and Lovozero Massifs: A Review. Minerals, 9(9), 535. https://doi.org/10.3390/min9090535.

Poirier, I. (1994). Light elements in the Earth’s outer core: a critical review. Physics of the Earth and Planetary Interiors, 85, 319-337. https://doi.org/10.1016/0031-9201(94) 90120-1.

Pollack, H.N. et.al. (1993). Heat flow from the Earth’s interior: Analysis of the global data set. Reviews of Geophysics, 31(3), 267-280. https://doi.org/10.1029/93RG01249.

Pozzo, M., Davies, C., Gubbins, D., & Alfe, D. (2012). Thermal and electrical conductivity of iron at Earth’s core conditions. Nature, 485, 355-358. https://doi.org/10.1038/nature11031.

Rampino, M.R. (2015). Disk dark matter in the Galaxy and potential cycles of extraterrestrial impacts, mass extinctions and geological events. Monthly Notices of the Royal Astronomical Society, 448(2), 1816-1820. https://doi.org/10.1093/mnras/stu2708.

Rohrbach, A., Ballhaus, C., Ulmer, P., Golla-Schindler, V., & Schonbohm, D. (2011). Experimental evidence for a reduced metal - saturated upper mantle. Journal of Petrology, 52(4), 71-731. https://doi.org/10.1093/petrology/egg101.

Rohrbach, A., Ballhaus, C., Golla-Schindler, V, Ulmer, P., Kamenetsky, V.S., & Kuzmin, D.V. (2007). Metal saturation in the upper mantle. Nature, 449, 456-458. https://doi.org/10.1038/nature06183pmid:17898766.

Rumyantsev, V.N. (2016). Hydrogen in the Earth’s outer core and its role in the deep Earth geodynamics. Geodynamics and Tectonophysics, 7(1), 119-135. https://doi.org/10.5800/GT-2016-7-1-0200.

Russell, M.J., Hall, A.J., & Martin, W. (2010). Serpentinization as a source of energy at the origin of life. Geobiology, 8(5), 355-371. https://doi.org/10.1111/j.1472-4669.2010.00249.x.

Rusov, V.D., Pavlovich, V.N., Vaschenko, V.N., Tarasov, V.A., Zelentsova, T.N., Bolshakov, V.N., Litvinov, D.A., Kosenko, S.I., & Byegunova, O.A. (2007). Geoantineutrino spectrum and slow nuclear burning on the boundary of the liquid and solid phases of the Earth’s core. Journal of Geophysical Research, 112(B9), B09203. https://doi.org/10.1029/2005JB004212.

Sato, M., Sutton, A.L., McGee, K.A., & Russel-Robinson, S. (1986). Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980-1984. Journal of Geophysical Research, 91(B12), 1315-1326. https:doi.org/10.1029/JB091iB12p12315.

Sherwood Lollar, J., Voglesonger, I.K., Lin, L-H., Lacrampe-Couloume, G., Telling, J., Abrajano, T.A., Onstott, T.C., & Pratt, L.M. (2007). Hydrogeologic Controls on Episodic H2 Rele-ase from Precambrian Fractured Rocks-Energy for Deep Subsurface Life on Earth and Mars. Astrobiology, 7(6), 971-986. https://doi.org/10.1089/ast.2006.0096.

Sherwood Lollar, B., Onstott, T., Lacrampe-Couloume, G., & Ballentine, C. (2014). The contribution of the Precambrian continental lithosphere to global H2 production. Nature, 516, 379-382. https://doi.org/10.1038/nature14017.

Shestopalov, V.M., Lukin, A.E., Starostenko, V.I., Gintov, O.B., & Rud, A.D. (2019). The prospects for hydrogen extraction from the Earth’s interior: Proc. of 16 International Conference «Hydrogen materials science and chemistry of carbon nanomaterials». Kyiv: KIM Publishing.

Simkin, T., Under, J.D., Tilling, R.I., Vogt, P.R., & Spall, H. (1994). This dynamic planet: world map of volcanoes, earthquakes, impact Craters and plate tectonics: Explanatory Notes. US Geological Survey in cooperation with the Smithsonian Institution. Retrieved from https://topex.ucsd.edu/erth01/DynamicPlanet.pdf.

Sleep, N.H., Meibom, A., Fridriksson, Th., Coleman, R.G., & Bird, D.K. (2004). H2-rich fluids from serpentinization: geochemical and biotic implications. Proceedings of the National Academy of Sciences of the USA, 101(35), 818-823. https://doi.org/10.1073/pnas.0405289101.

Smith, E.M., Shirey, S.B., Nestola, F., Bullock, E.S., Wang, J., Richardson, S.H., & Wang, W. (2016). Large gem diamonds from metallic liquid in Earth’s deep mantle. Science, 354, 1403-1405. https://doi.org/10.1126/science.aall303.

Šrámek, O., McDonough, W.F., Kite, E.S., Lekić, V., Dye, S.T., & Zhong, S. (2013). Geophysical and geochemical constraints on geoneutrino flu-xes from Earth’s mantle. Earth and Planetary Science Letters, 361, 356-366. https://doi.org/10.1016/j.epsl.2012.11.001.

Stevenson, D.I. (1977). Hydrogen in the Earth’s core. Nature, 268, 130-131. https://doi.org/10.1038/268130a0.

Sugisaki, R., Anno, H., Adashi, M., & Ui, H. (1980). Geochemical features of gases and rocks along active faults. Geochemical Journal, 14(3), 101-112. https://doi.org/10.2343/geochemj.14.101.

Su, Q., Zeller, E., & Angino, E.E. (1992). Inducing action of hydrogen migrating along faults on earthquakes. Acta Seismologica Sinica, 5(4), 841-847. https://doi.org/10.1007/BF02651032.

Takai, K., Gamo, T., Tsunogai, U., Nakayama, N., Hirayama, H., Nealson, K.H., & Horikoshi, K. (2004). Geochemical and microbiological evidence for a hydrogen-based, hyper-thermophilic subsurface lithoautotrophic microbial ecosystem (Hyper SLIME) beneath an active deep sea hydrothermal field. Extremophiles, 8, 269-282. https://doi.org/10.1007/s00792-004-0386-3.

Toulhoat, H., Beaumont, V., Zgonnik, V., Larin, N.V., & Larin, V.N. (2015). Chemical Differentiation of Planets: A Core Issue. Retrieved from https://arxiv.org/abs/1208.2909.

Quick, I.E., Hinkley, T.K., Reiner, G.V., & Hodge, C.E. (1991). Tritium concentration in the active Pu'uO'o crater, Kilauea volcano, Hawaii: implication for cold fusion in the Earth's interior. Physics of the Earth and Planetary Interiors, 69(1-2), 132137. https://doi.org/10.1016/0031-9201(91)90159-F.

Valyaev, B., & Dremin, I. (2013). Recycling of crustal matter and the processes of mantle-crust interaction in the genesis of hydrocarbon fluids: International Conference on Gas Geochemistry, Patras, Greece, 1-7 September, Book of abstracts. P. 32

Vovk, I.F. (1987). Radiolytic salt enrichment and brine in the crystalline basement of the East European platform, in Saline Water and Gases in Crystalline Rocks. Geological Association of Canada, Special Paper, 33, 197-210.

Wakita, H., Nakamura, V., Kita, I., Fujii, N., & Notsu, K. (1980). Hydrogen release, new indicator of fault activity. Science, 210, 188-190. https://doi.org/10.1126/science.210.4466.188.

Wang, X.B., Ouyang, Z.Y., Zhuo, Sh.G., Zhang, M.F., Zheng, G.D., & Wang, Y.L. (2014). Serpentinization, abiogenic organic compounds, and deep life. Science China, Earth Sciences, 57(5), 878-887. https://doi.org/10.1007/s11430-014-4821-8.

Walshe, J.L. (2006). Degassing of hydrogen from the Earth’s core and related phenomena of the system Earth. Geochimica et Cosmochimica Acta, 70(18), A684-A684. https://doi.org/10.1016/j.gca.2006.06.1490

Ware, R.N., Roecken, C., & Wyss, M. (1984). The detection and interpretation of hydrogen in fault gases. Pure and Applied Geophysics, 122(2-4), 392-402. https://doi.org/10.1007/B F00874607.

Warr, O., Guinta, T., Ballentine, Ch. J., & Sherwood Lollar, B. (2019). Mechanisms and rates of He, Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments. Chemical Geology, 530, 119322. http:doi.org/10.1016/j.chemgeo.2019.119322.

White, W.M. (2013). Radioactivity in the oceanic crust: Proc. of the conference «Neutrino Geoscience 2013». Takayama. Japan. Retrieved from http://www.awa.tohoku.ac.jp/geoscience2013/.

Worman, S.L., Pratson, L.F., Karson, J.A., & Klein, E.M. (2016). Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere. Geophysical Research Letters, 43, 6435-6443. http:doi.org/10.1002/2016GL069066.

Zarifi, Z., & Havskov J. (2003). Characteristics of dense nests of deep and intermediate-depth seismicity. Advances in Geophysics, 46, 237-276. 10.1016/S0065-2687(03)46004-4.

Zgonnik, V. (2020). The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews, 203, 103140. https: //doi.org/10.1016/j.earscirev.2020.103140.

Zhang, S., Lin, J., Wang, Y., Yang, G-Ch., Berga-ra, A., & Ma, Y. (2018). Nonmetallic FeH6 under High Pressure. Journal of Physical Chemistry, 122(22), 12022-12028. https://doi.org/10.1021/acs.jpcc.8b04125.

Zhou, X., Du, J., Chen, Z., Cheng, J., Tang, Yi., Yang, L., Xie, C., Cui, Y., Liu, L., Yi, L, Yang, P., & Li, Y. (2010). Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China. Geochemical Transactions, 11, 5. https://doi.org/10.1186/1467-4866-11-5.

Zhitnuev, N.S. (2012). Transmantle fluid flows and the origin of plumes, Doklady RAN, 444(1), 50-55 (in Russian).

Kopnichev, Yu.F. (1997). Variations of transverse wave absorption field prior to the strong earthquakes in the Northern Tien Shan. Doklady RAN, 356(4), 528-532 (in Russian).

Lay, T. (2015). Deep Earth Structure: Lower Mantle and D'' Rocks. In G. Schubert (Ed.), Treatise on Geophysics (Vol. 1, pp. 684-723). Oxford: Elsevier. doi:10.1016/B978-0-444-53802-4.00019-1.

McCollom, T.M., & Bach, W. (2009). Thermodynamic constraints on hydrogen generation during serpentinisation of ultramafic rocks. Geochimica et Cosmochimica Acta, 73(3), 856-875. https://doi.org/10.1016/j.gca.2008.10.032.

McCollom, T.M., & Seewald, L.S. (2013). Serpentinites, hydrogen and life. Elements, 9(2), 129-134. https://doi.org/10.2113/gselements.9.2.129

Quick, I.E., Hinkley, T.K., Reiner, G.V., & Hodge, C.E. (1991). Tritium concentration in the active Pu'uO'o crater, Kilauea volcano, Hawaii: implication for cold fusion in the Earth's interior. Physics of the Earth and Planetary Interiors, 69(1-2), 132-137. https://doi.org/10.1016/0031-9201(91)90159-F.

Toulhoat, H., Beaumont, V., Zgonnik, V., Larin, N.V., & Larin, V.N. (2015). Chemical Differentiation of Planets: A Core Issue. Retrieved from https://arxiv.org/abs/1208.2909.

##submission.downloads##

Опубліковано

2020-12-24

Як цитувати

Shestopalov, V. (2020). Про геологічний вуглеводень. Геофізичний журнал, 42(6), 3–35. https://doi.org/10.24028/gzh.0203-3100.v42i6.2020.222278

Номер

Розділ

Статті