Глобальна інвентаризація вимірювань концентрації вільного і розчиненого в підземних водах молекулярного водню в земній корі суші

Автор(и)

  • O.M. Rusakov Інститут геофізики ім. С.І. Суботіна НАН України, Україна

DOI:

https://doi.org/10.24028/gzh.0203-3100.v42i6.2020.222284

Ключові слова:

вільний молекулярний водень, земна кора, типи резервуарів, концентрація водню, механізми утворення водню

Анотація

Проведено глобальну інвентаризацію вимірювань концентрації вільного і розчиненого у підземних водах молекулярного водню в земній корі суші із зазначенням їх регіональної прив’язки, середньої концентрації водню і її стандартного відхилення в кожному пункті, якщо концентрація перевищує 0,01 %. Для аналізу інформації пункти відбору залежно від типу дегазуючих структур класифіковані на 5 груп. Вони представлені офіолітовими комплексами, геотермальними системами, підземними водами, масивами ультрабазитів і ґрунтами. Зразки відібрані на 5 континентах у 32 країнах із 97 резервуарів 318 пунктів. У 3481 аналізі газів установлено наявність водню з різними концентраціями. Подано 294 значення R/Ra. Всі резервуари нанесено на карту світу, на якій також показано положення свердловин на території колишнього СРСР, де зареєстровано наявність водню, що надходить із підземних вод. У цілому основна маса вивчених резервуарів містить водню у невеликій кількості, тому що тільки в 16 (16,5 %) з них його концентрація перевищує 5 %. Найбільшу концентрацію водню (середнє значення 60,34 %, 7 свердловин) зафіксовано в оголовках гідрогеологічних свердловин безпосередньо після завершення буріння. Концентрація водню в ґрунті в околі свердловин у 1070—1600 разів менша, ніж водню у свердловинах, що надходить з підземних водних горизонтів. Зони сучасної активізації, що супроводжуються інтенсивними геотермальними процесами, генерують водень низької концентрації, у середньому — 1,6 ± 3,97 % (43 вимірювання). У ґрунтових газах концентрація водню коливається в діапазоні 0,03—0,06 %, за винятком Московської області (0,25 %). Концентрація водню в ґрунті зон активних розломів змінюється хаотично уздовж порушень залежно від складу осадових порід, що їх заповнюють. Лише в зонах активних розломів протягом декількох років підготовки в регіоні сильних землетрусів зафіксовано виходи водню на земну поверхню з концентрацією, яка перевищує фонову до 200 разів, сягаючи 4 %. Про наявність водню у складі газів з мантійною компонентою згадується в 14 публікаціях, в основному, виходячи з величини R/Ra. Однак перший спільний аналіз співвідношень ізотопів гелію і сейсмотомографічних даних дає змогу припустити унікальний випадок наявності водню в одній геотермальній структурі Єллоустонської кальдери. Ключову роль в утворенні водню відіграє сучасна вода. Його генерація відбувається виключно в земній корі в результаті окиснення лужної водою двовалентного заліза в основних і ультраосновних породах за різними схемами хімічних реакцій, а водяна пара завжди наявна у магматичних газах, де водень зареєстрований 24 рази. У поодиноких (чотири) випадках джерелом водню в незначних кількостях є радіоліз лужної води або радіоактивний розпад.

Посилання

Bagriy, I.D., & Kuzmenko, S.A. (2019). Scientific substantiation of the spatial distribution and mapping of anomalous manifestations of hydrogen as an energy raw material of the XXI century in oil-and-gas structures of Ukraine and warning of geodynamic events. Heolohichnyy zhurnal, (1), 59-77. https://doi.org /10.30836/igs.1025-6814.2019.1.159241 (in Russian).

Bembel, M.R., Kuzmin, A.A., Podkorytov, M.S., Bembel, A.R., Prokopov, S.P., & Antonovich, M.M. (2011). Hydrogen degassing of the Earth's core. Akademicheskiy vestnik, (4), 138-144 (in Russian).

Vernadskiy, V.I. (1960). Selected Works (Vol. 4, Book 2). Moscow: Publ. House of the Academy of Sciences of the USSR, 651 p. (in Russian).

Vinogradov, A.P. (1963). Chemistry of the Earth. In Through the eyes of a scientist (pp. 27-46). Moscow: Publ. House of the Academy of Sciences of the USSR (in Russian).

Kozlova, N.S., Rudakov, V.P., Shuleikin, V.N., Voytov, G.I., & Baranova, L.V. (1999). Emanation and electrical effects in the atmosphere of subsurfaces above the Kaluga impact ring structure. Russian Rossiyskiy zhurnal nauk o Zemle, (1). Retrieved from http://elpub.wdcb.ru/journals/rjes/rus/v01/rje99027/rje99027.htm (in Russian).

Litvinova, I.V. (2019). Hydrogeological criteria of oil-and-gas content of the Kureiskaya syneclise. Candidate′s thesis. Novosibirsk, 202 p. (in Russian).

Molchanov, V.I. (1981). Generation of hydrogen in lithogenesis. Novosibirsk: Nauka, 142 p. (in Russian).

Nivin, V.A. (2013). Gas components in igneous rocks: geochemical, mineragenic and ecological aspects and consequences (on the example of intrusive complexes of the Kola province). Doctor’s thesis. Apatity, 354 p. (in Russian).

Novosiletskiy, R.M., & Sharun, D.V. (1982). Hydrogeochemical indicators of the APVD distribution zone in the DDV. Geologiya nefti i gaza, (7), 41-46 (in Russian).

Rodionov, V.G. (2010). Energy: Problems of the Present and Opportunities for the Future. Moscow: ENAS, 344 p. (in Russian).

Sorokhtin, O.G., & Ushakov, S.A. (1991). Global evolution of the Earth. Moscow: Publishing house of Moscow State University, 446 p. (in Russian).

Sukhanova, N.I., Trofimov, S.Ya., Polyanskaya, L.M., Larin, N.V., & Larin, V.N. (2013). Changes in the gummy state and structure of microbial biomass at the sites of hydrogen exhalation. Pochvovedeniye, (2), 1-11 (in Russian).

Urdukhanov, R.I., Saidov, O.A., & Magomedov, Kh.D. (2019). Carbon isotopic and hydrogen-helium precursors of earthquakes. Monitoring. Nauka i tekhnologii, (1), 13-23. https://doi.org/10.25714/MNT.2019.39.002 (in Russian).

Shestopalov, V.M., Lukin, A.E., Zgonnik, V.A., Makarenko, A.N., Larin, N.V., & Boguslavskiy, A.S. (2018). Essays on the degassing of the Earth. Kiev: PE «Itek-service», 232 p. (in Russian).

Shcherbakov, A.V., & Kozlova, N.D. (1986). The prevalence of hydrogen in underground fluids and the relationship of its anomalously high concentrations with deep faults in the USSR. Geotektonika, (2), 56-66 (in Russian).

Abrajano, T.A., Sturchio, N.C., Bohlke, J.K., Lyon, G.L., Poreda, R.J., Stevens, C.M. (1988). Methane-hydrogen gas seeps, Zambales ophi-olite, Phiippines: Deep or shallow origin? Chemical Geology, 71(1), 211-222. https://doi.org /10.1016/0009-2541(88)90116-7.

Aguilera, F., Benavente, У., Gutiйrrez, F., Romero, J., Saltori, O., Gonzбlez, R., Gonzбlez, M., Caselli, A., & Pizarro, M. (2016). Eruptive activity of Planchуn-Peteroa volcano for period 2010-2011, Southern Andean Volcanic Zone, Chile. Andean Geology, 43(1), 20-46. doi: 10. 5027/andgeoV43n1-a02.

Agusto, M., Tassi, F., Caselli, Z.A.T., Vaselli, O., Rouwet, D., Capaccioni, B., Caliro, S., Chiodini, G., & Darrah, T. (2013). Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue-Caviahue Volcanic Complex (Argentina). Journal of Volcanology and Geothermal Research, 257, 44-56. https://doi.org /10.1016/j.jvolgeores.2013.03.003.

Altamirano, J.I.C. (2006). Sampling and analysis of geothermal steam and geothermometer application in Krafla, Theistareykir, Reykjanes and Svartsengil, Iceland. In Geothermal Training Programme (The United Nations Universi-ty, Reports, No 13) (pp. 153 169).

Allard, P., Maiorani, A., Tedesco, D., Cartecci, G., & Turi, B. (1991). Isotopic study of the origin of sulfur and carbon in Solfara fumaroles, Campi Flegrey caldera. Journal of Volcanology and Geothermal Research, 48(1-2), 139 159. https://doi.org/10.1016/0377-0273(91)90039-3.

Arnòrsson, S., Björksson, A., Gislason, G., & Gudmudsson, G. (1975). Systematic exploration of Krнsuvik high-temperature area, Reykjanes peninsula, Iceland: Proc. of Second United Nations Symposium on development and Use of Geothermal Resources (Vol. 1, pp. 853-864). Us Government Printing Office, San Francisco.

Barbier, S., Huang F., Andreani M., Tao, R., Hao, J., Eleish, A., Prabhu, A., Minhas, O., Fontaine, K., Fox, P., & Daniel, I. (2020). A Review of H2, CH4, and Hydrocarbon Formation in Experimental Serpentinization Using Network Analysis. Frontiers in Earth Science, 8. https://doi.org/10.33 89/feart.2020.00209.

Bergfeld, D., Lowenstern, J.B., Hunt, A.G., & Shanks, III W.C.P. (2011). Gas and Isotope Chemistry of Thermal Features in Yellowstone National Park, Wyoming. U.S. Geological Survey Scientific Investigations Report 2011-5012, 26 p.

Bicocchi, G., Tassi, F., Bonini, M., Capecchiacci, F., Ruggieri, G., Buccianti, A., Burgassi, B., & Vaselli, O..(2013). The high pCO2 Caprese Reservoir (Northern Apennines, Italy): Relationships between present- and paleo-fluid geochemistry and structural setting. Chemical Geology, 351(2), 40-56. https://doi.org/10.1016/j.chemgeo.2013.05.001.

Briere, D., Jerzykiewicz, T., & Śliwiǹski, W. (2017). On generating a geological model for hydrogen gas in the Southern Taudenni Megabasin (Bourakebougou area, Mali). Search and Discovery Article #4204. Retrieved from http://www.searchanddiscovery.com/documents/2017/42041jerzykiewicz/ndx_jerzykiewicz.pdf.

Birkle, P., Marín, E.P., Pinti, D.L., & Castro, C. (2016). Origin and evolution of geothermal fluids from Las Tres Vнrgenes and Cerro Prieto fields, Mexico - Co-genetic volcanic activity and paleoclimatic constraints. Applied Geochemistry, 65, 3-53. http://dx.doi.org/10.1016/j.apgeochem.2015.10.009.

Brombach, T., Caliro, S., Chiodini, G., Fiebig, J., Hunziker, J.C., & Raco, B. (2003). Geochemical evidence for mixing of magmatic fluids with seawater, Nisyros hydrothermal system, Greece. Bulletin of Volcanology, 65, 505-516. https://doi.org/10.1007/s00445-003-0278-x.

Boulart, C. Chavagnac, V., Monnin, C, Delacour, A., Ceuleneer, G., & Hoareau, G. (2013). Differences in gas venting from ultramafic-hosted warm springs: the example of Oman and Voltri Ophiolites. Ofioliti, 38(2), 143-156. doi: 10. 4454/ofioliti.v38i2.423.

Byrd, D. (2014). 4.8 - magnitude earthquake in Yellowstone Park on March 30. Retrieved from https://earthsky.org/earth/earthquake-in-yellowstone-national-park-on-march-30.

Capasso, G., Carapezza, M., Federico, C., Inguaggiato, S., & Rizzo, A. (2005). Geochemical monitoring of the 2002-2003 eruption at Stromboli volcano (Italy): Precursory changes in the carbon and helium isotopic composition of fumarole gases and thermal waters. Bulletin Volcanology, 68, 118-134. https://doi.org/10.1007/s00445-005-0427-5.

Carapezza, M.L., & Tarchini, L. (2007). Acciden-tal gas emission from shallow pressurized aquifers at Alban Hills volcano (Rome, Italy): Geochemical evidence of magmatic degassing? Journal of Volcanology and Geothermal Research, 165, 5-16. https://doi.org/10.1016/j.jvolgeores.2007.04.008.

Chiodni, G., Marini, L., & Russo, M. (2001). Geochemical evidence for the existence of high temperature hydrothermal brines at Vesuvio volcano, Italy. Geochimica et Cosmochimica Acta, 65(13), 2129-2147. https://doi.org/10.1016/S0016-7037(01)00583-X.

Chiodini, G., Caliro, S., Lowenstern, J.B., Evans, W.C., Bergfeld, D., Tassi, F., & Tedesco, D. (2012). Insights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateau. Geochimica et Cosmochimica Acta, 89, 265-278. https://doi.org/10.1016/j.gca.2012.04.051

Coveney, Jr R.M., Goebel, E.D., Zeller, E.J., Dreschhoff, A.A.M., & Angino, E.E. (1987). Serpentinization and origin of hydrogen gas in Kansas. The American Association of Petroleum Geologists Bulletin, 71(1), 39-48. https://doi.org/10.1306/94886D3F-1704-11D7-8645000102C1865D.

Crespo-Medina, M., Twing, K., Sánchez, R., Brazelton, W.J., McCollom, T.M., & Screnk, M.O. (2017, 23 May). Methane Dynamics in a Tropical Serpentinizing Environment: The Santa Elena Ophiolite, Costa-Rica. Frontiers Microbiology. https://doi.org/10.3389/fmicb.2017.00916.

Daae, F.L., Økland, I., Dahle, H., Jørgensen, S.L., Thorseth, I.H., & Pedersen, R.B. (2013). Microbial life associated with low-temperature alte-ration of ultramafic rocks in the Leka ophiolite complex. Geobiology, 11(4), 318-339. https://doi.org/10.1111/gbi.12035.

D’Allessandro, W., Yüce, G., Italiano, F., Bellomo, S., Gübay, A., Yasin, D.U., & Gagliano, A.L. (2018). Large compositional differences in the gases releases from Kizildag ophiolitic body (Turkey): Evidence of prevailingly abiogenic origin. Marine and Petroleum Geology, 89(1), 174-184. https://doi.org/10.1016/j.marpetgeo.2016.12.017.

Deronzier, G-F., & Giouse, H. (2020). Vaux-en-Bugey (Ain, France): the first gas field produced in France, providing learning lessons for natural hydrogen in the sub-surface? BSGF Earth Sciences Bulletin, 191(7). https://doi.org/ 10.1051/bsgf/20220005.

Dugamin, E., Truche, L., & Donzē, E. (2019). Na-tural hydrogen exploration guide. Retrieved from https://www.researchgate.net/profile/Frederic_Donze/publication/330728855_Natural_Hydrogen_ExplExplora_Guide/links/5c59492e299bf12be3fd2524/Natural-Hydrogen-Exploration-Guide.pdf.

Emmanuel, S., & Ague, J.J. (2007). Implication of present-day abiogenic methane fluxes for the Early Archian atmosphere. Geophysical Research Letters, 34(5), L15810. https://doi.org/10.1029/2007GL030532.

Etiope, G. (2017). Abiotic methane in continental serpentinization sites: an overview. 15th Water-Rock Interaction International Symposium, WRI-15. Procedia Earth and Planetary Science 17(1), 9-12. https://doi.org/10.1016/j.proeps.2016.12.006.

Etiope, G., Tsikouras, B., Kordella, S., Ifandi, E., Christodoulou, D., & Papatheoddorou, G. (2013). Methane flux and origin in the Othrys ophiolite hyperalkaline springs, Greece. Chemical Geology, 347(1), 161-174. https/org/10.1016/i.chemgeo.2013.04.003.

Etiope, G., Vadillo, I., Whiticar, M.J., Marqu-es, J.M., Carreira, P.M., Tiago, I., Benavente, J., Jimenez, P., & Urresti, B. (2016). Abiotic methane seepage in the Ronda peridotite massif, southern Spain. Applied Geochemistry, 6(1), 101-113. http://dx.doi.org/10.1016/j.apgeochem.2015.12.001.

Etiope, G., Samardћic, N., Grassa, F., Hrvatovi, H., Mioљic, H., Skopljak, F., Samardzi, N., Grassa, F., Hrvatovi, H., Miosic, N., & Skopljak, F. (2017). Methane and hydrogen in hyperalkaline groundwaters of the serpentinized Dinaride ophiolite belt, Bosnia and Herzegovina. Applied Geochemistry, 84, 286-296. https://doi.org/10.1016/j.apgeochem.2017.07.006.

Evans, C.S. (2010). Playas in Kansas and the High Plains. In Kansas Geological Survey (pp. 1-6). Public Information Circular 30.

Farrell, J., Smith, R.B., Husen, S., & Diehl, T. (2014). Tomography from 26 years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera. Geophy-sical Research Letters, 41, 1-5. http://doi.org/10.1002/2014GL059588.

Firestone, R.B., West, B.A., Kennet, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Shultz, P.H., Belgya, T., Kennet, D.J., Erladson, J.M., Goodyear, A.C., Harris, R.S., Howard, G.A., Kloosteman, J.B., Lechler, P., Maewski, P.A., Montgo-mery, J., Poreda, R., Darrah, T., Que Hee, S.S., Smith, A.R., Stich, A., Topping, W., Wittke, J.H., & Wolbach, W.S. (2007). Evidence for an extraterrestrial impact 12,900 years ago that cont-ributed to the megafaunal extinctions and the Younger Dryas cooling: Proc. of the National Academy of Sciences of the United States of America, 104(41), 16016-16021. https://doi.org/10.1073/pnas.0706977104.

Firstov, P.P., Yakovleva, V.S., Shirokov, V.A., Rulenko, O.P., Filippov, Yu.A., & Malysheva, O.P. (2007). The nexus of soil radon and hydrogen dynamics and seismicity of the northern flank of the Kuril-Kamchatka subduction zone. Annals of Geophysics, 50(4), 547-556.

Fourré, E., Napoli, R.Di., Aiuppa, A., Aiuppa, F., Gaubi, E., Jean-Baptiste, P., Allard, P., Calabrese, S., & Ben Mamou, A. (2011). Regional variations in the chemical and helium-carbon isotope composition of geothermal fluids across Tunisia. Chemical Geology, 288(1-2), 67-85. http://doi.org/10.1016/j.chemgeo.2011.07.003.

Garofalo, K. (2006). Origin, composition and evolution of fumarolic fluids of subduction zone volcanoes in Nicaragua. Dissertation zur Erlangung des Doktorgrades der Mathematisch-Na-turwissenschaftlichen Fakultдt der Christian-Albrechts-Universitдt zu Kiel, 100 p.

Garofalo, K., Tassi, F., Vaselli, O., Delgado-Huertas, A., Tedesco, D., Frische, M., Hansteen, T.H., Poreda, R.J., & Strauch, W. (2006). Fumarolic gases at Mombacho volcano (Nicaragua): presence of magmatic gas species and implicati-ons for volcanic surveillance. Bulletin of Volca-nology, 69, 785-795. http://doi.org/10.1007/s 00445-006-0108-z.

Gibbon Geyser Basin (Yellowstone hot spot) geothermal features. (2010). Retrieved from www.jsgeology.net.

Goebel, E.D., Coveney, R.M.Jr., Angino, E.E., & Zeller, E.J. (1983). Naturally occurring hydrogen gas from a borehole on the western flank of the Nemaha Anticline in Kansas. American Association of Petroleum Geologists Bulletin, 67(8), 1324. https://doi.org/10.1306/03B5B76D-16D1-11D7-8645000102C1865D.

Goff, F., McMurtry, G.M., Counce, D., Simac, J.A., Roldµn-Manzo, A.R., & Hilton, D.R. (2000). Contrasting hydrothermal activity at Sierra Negra and Alcedo volcanoes, Galapagos Archipelago, Ecuador. Bulletin of Volcanology, 62, 34-52. https://doi.org/10.1007/s0044500 50289.

Graham, D.W. (2002). Gas isotope geochemistry of Mid-Ocean Ridge and Ocean island basalts characterization of mantle source reservoirs. Reviews in Mineralogy and Geochemistry, 47(1), 247-317. https://doi.org/10.2138/rmg.2002.47.8.

Grassa, F., Inguaggiato, S., & Liotta, M. (2008). Fluid Geochemistry of Stromboli. Geophysical Monograph Series, 182, 49-63. https://doi.org /10.1029/182GM06.

Gregory, S.P., Barnett, M.J., Field, L.P., Milodow-ski, A.E. (2019). Subsurface Microbial Hydrogen Cycling: Natural Occurrence and Implications for Industry. Microorganisms, 7(2), 53. http://doi.org/10.3390/microorganisms7020053.

Gudjónsdóttir, S.R., Ilyinskaya, E., Hreinsdóttir, S., Bergsson, B., Pfeffer, M.A., Michalczewska, K., Aiuppa, A., & Óladóttir, A.A. (2018). Gas emissions and crustal deformation from the Krэsuvнk high temperature geothermal system, Iceland. Journal of Volcanology and Geothermal Research, 391, 106350. https://doi.org/10.1016/j.jvolgeores.2018.04.007.

Guelard, J., Beaumont, V., Rouchon, V., Guyot, F., Pillot, D., Jezequel, D., Ader, M., Newell, K.D., & Deville, E. (2018). Natural H2 in Kansas: Deep or shallow origin? Geochemistry, Geophysics, Geosystems, 18(5), 1841-1865. https://doi.org/10.1002/2016GC006544.

Guelard, J. (2016). Caracterisation des emanati-ons de dihydrogиne naturel en contexte intracratonique: Exemple d’une interaction gaz/eau/roche au Kansas. PhD thesis, Paris 6 Universite de Pierre et Marie Curie, 295 p.

Harvey, D. (2016). Solutions Manual to Analytical Chemistry 2.1. Retrieved from http://dpuadweb.depauw.edu/harveyweb/eTextProjectSMFiles/AC2.1SolnManual.pdf.

Haynes, W.M., Lide, D.R., & Bruno, T.J. (2016). CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. 97th Edition. Boca Raton, Florida: CRC Press, 1560 p.

Hosgormez, H., Etiope, G., & Yalc, M.N. (2008). New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): a large onshore seepage of abiogenic gas. Geofluids, 8(4), 263-273. https://doi.org/10.1111/j.1468-8123.2008.00226.x.

Huang, H-H., Lin, F-C., Schmandt, B., Farrell, J., Smith, R.B., & Tsai, V.C. (2015). The Yellowstone magmatic system from the mantle plume to the upper crust. Science Express, 348, 773-776. https://doi.org/10.1126/science.aaa5648.

Hurwitz, S., Lowenstern, J.B. (2014). Dynamics of the Yellowstone hydrothermal system. Review of Geophysics, 51, 375-411, doi: 10.1002/2014RG000452.

Inguaggiato, S., Pecoraino, G., & D’Amorec, F. (2000). Chemical and isotopical characterization of fluid manifestations of Ischia Island (Italy). Journal of Volcanology and Geothermal Research, 99(1-4), 151-178. https://doi.org/10.1016 /S0377-0273(00)00158-X.

Italiano, F., Yuce, G., Uysal, I.T., Gasparon, M., & Morelli, G. (2014). Insights into mantle-type volatiles contribution from dissolved gases in artesian waters of the Great Artesian Basin, Australia. Chemical Geology, 378-379, 75-85. http://dx.doi.org/10.1016/j.chemgeo.2014.04.013.

Johnsgard, S.K. (1988). The fracture pattern of north-central Kansas and its relation to hydrogen soil gas anomalies over the midcontinent rift system. Master of Science Thesis, the University of Kansas, 12 p.

Jones, V.T., & Pirkle, R.J. (1981). Helium and hydrogen soil gas anomalies associated with deep or active faults. Presented to the American Chemical Society, March 29-April 3, 1981, Atlanta, Georgia.

Joseph, E.P., Fournier, N., Lindsay, J.M., & Fischer, T.P. (2011). Gas and water geochemistry of geothermal systems in Dominica, Lesser Antilles island arc. Journal of Volcanology and Geothermal Research, 206, 1-14. doi: 10.1016/j.jvolgeores.2011.06.007.

Joseph, E.P., Fournier, N., Lindsay, J.M., Robertson, R., & Beckles, D.M. (2013).Chemical and isotopic characteristics of geothermal fluids from Sulphur Springs, Saint Lucia. Journal of Volcanology and Geothermal Research, 254, 23-26.

Kalacheva, E., Taran, Yu., & Kotenko, T. (2015). Geochemistry and solute fluxes of volcano-hydrothermal systems of Shiashkotan, Kuril Islands. Journal of Volcanology and Geothermal Research, 256, 40-54. http://dx.doi.org/10.1016/j.jvolgeores.2015.03.010.

Kalacheva, E., Taran, Yu., Kotenko, T., Hattori, K., Kotenko, L., & Solis-Pichardo, G. (2016). Volcano-hydrothermal system of Ebeko volcano, Paramushir, Kuril Islands: Geochemistry and solute fluxes of magmatic chlorine and sulfur. Journal of Volcanology and Geothermal Research, 310, 118-131. https://doi.org/10.1016/j.jvolgeores.2015.11.006.

Klein, F., Grozeva, N.G., & Seewalda, J.S. (2019). Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. PNAS 116(36), 17666-17672. https://doi.org/10.1073/pnas.1907871116.

Kyriakopoulos, G.K. (2010). Natural degassing of carbon dioxide and hydrogen sulphide and its environmental impact at Milos Island, Greece. Bulletin of the Geological Society of Greece. Proceedings of the 12th International Congress Patras, May, 2010.

Larin, N. (1993). Hydridic Earth. The new geology of our primordially hydrogen-rich planet. Calgary: PolarPublishing, 242 p.

Larin, N., Zgonnik, V., Rodina, S., Deville, E., Prinzhofer, A., & Larin, V.N. (2015). Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia. Natural Resources Research, 24, 369-383. https://doi.org/10.1007/s11053-014-9257-5.

Laurey, P., & Chamberlain, D. (2002). The South Carolina Aquarium Guide to Aquatic Habitats of South Carolina. Columbia: Univ. of South Carolina Press, 301 p.

Li, L., Wing, B., Bui T.H., McDermott, J.M., Slater, G.F., Wei, S., Lacrampe-Couloume, G., & Sherwood Lollar, B. (2016). Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks. Nature Communication, 7, 13252. https://doi.org/10.1038/ncomms13252.

Lin, Li-H., Hall, J., Lippmann-Pipke, J., Ward, J.A., Sherwood Lollar, B., De Flaun, M., Rothmel, R., Moser, M., Gihring, T.M., Mislowack, B., Onstott, T.C. (2005). Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochemistry, Geophysics, Geosystems, 6(7), Q07003. https://doi.org/10.1029 /2004GC000907.

Lippmann, J., Stute, M., Torgersen, T., Moser, D.P., Hall, J.A., Lin, L., Borcsik, M., Bellamy, R.E.S., & Onstott, T.C. (2003). Dating ultra-deep mine waters with noble gases and 36Cl, Witwaters-rand Basin, South Africa 2003. Geochimica et Cosmochimica Acta, 67(23), 4597-4619. https://doi.org/10.1016/S0016-7037(03)00414-9.

Lowenstern, J.B., Evans, W.C., Bergfeld, D., & Hunt, A.G. (2014). Prodigious degassing of a billions years of accumulated radiogenic helium at Yellowstone. Nature, 506, 355-358. https://doi.org/10.1038/nature12992.

Lowernstern, J.B, & Janik, C.J (2003). The origin of reservoir liquids and vapors from the Geysers Geocthermal Field, California (USA). US Society of Economic Geologists Special Publication, 10, 1-53.

Marques, J.M., Neves, M. O., Miller, A.Z., Rocha, C., Vance, S., Christensen, L., Etiope, G, Carreira, P.M, & Suzuki, S. (2017). Water-rock interaction ascribed to hyperalkaline mineral waters in the Cabeзo de Vide serpentinized ultramafic intrusive massif (Central Portugal). 15th Water-Rock Interaction International Symposium, WRI-15. Procedia Earth and Planetary Science, 17, 646-649.

Masson-Delmotte, V., Zhai, P., & Pörtner, H.O. (Eds). (2018). Global Warming of 1.5 °C. In An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (pp. 1-9). Retrieved from https://www.cooperacionsuiza.pe/wp-content/uploads/2018/03/3.reporte-especial-calentamiento-global-a-1.5c.pdf.

Mazzini, A., Lupi, M., Sciarra, A., Hammed, M., Schmidt, S.T., & Suessenberger, A. (2019). Concentric Structures and hydrothermal venting in the Western Desert, Egypt. Frontiers in Earth Science, 7, 266. https://doi.org/10.3389/feart.2019.00266.

Mayhew, L., Ellison, E.T., McCollom, T.M., Trainor, T.P., & Templeton, A.S. (2013). Hydrogen generation from low-temperature water-rock reactions. Nature Geoscience, 6(6), 478-484. https://doi.org/10.1038/ngeo1825.

McCarthy, Jr.J.H., Cunningham, K.I., Roberts, A.A., & Dietrich, J.A. (1986). Soil gas studies around hydrogen-rich natural gas wells in northern Kansas. Open-File Report 86-461. United States Department of the Interior, Geological Survey.

McCarthy, H., & McGurie, E. (1998). Soil gas studies along the Carlin trend, Eureka and Elko counties, Nevada. In: R.H. Tosdal (Ed.), Contributions to the gold metallogeny of Northern Nevada (pp. 243-250). USGS Open-File Report 98-338. https://doi.org/10.3133/ofr98338B.

McCollom, T.M., & Bach, W. (2009). Thermody-namic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochimica et Cosmochimica, 37(3), 856-875. https://doi.org/10.1016/j.gca.2008.10.032

Miller, H.M. (2017). Low temperature hydrogen production and habitability of a hyperalkaline serpentinites aquifer in the Samail ophiolite. Doctor of Philosophy Thesis, the University of Colorado, 333 p.

Minissale, A., Magro, G., Martinelli, G., Vaselli, O., & Tassi, G.F. (2000). Fluid geochemical tran-sect in the Northern Apennines (central-northern Italy): fluid genesis and migration and tectonic implication. Tectonics, 319(3), 199-222. https://doi.org/10.1016/S0040-1951(00)00031-7.

Minissale, A., Corti, G., Tassi, F., Darrah, T.H, Vaselli, O., Montanari, D., Montegrossi, G., Yirgu, G., Selmo, E., & Teclu, A. (2017). Geothermal potential and origin of natural thermal fluids in the northern Lake Abaya area, Main Ethiopian Rift, East Africa. Journal of Volcanology and Geothermal Research, 336, 1-18. http://dx.doi.org/10.1016/j.jvolgeores.2017.01.012.

Mizutani, Y., & Sogiura, T. (1982). Variations in chemical and isotopic compositions of fumarolic gases from Showashinzan volcano, Hokkaido, Japan. Geochemical Journal, 16, 63-71. https://doi.org/10.2343/geochemj.16.63.

Moretti, R., Natale, G.De, & Troise, C. (2017). A geochemical and geophysical reappraisal to the significance of the recent unrest at Campi Flegrei caldera (Southern Italy). Geochemistry, Geophysics, Geosystems, 18, 1244-1269. https://doi.org/10.1002/2016GC006569.

Morrill, R.L., Kuenen J.G., Johnson O.J., Suzuki, S., Rietze, A., Sessions, A.L., Fogel, M.L., & Nealson, K.H. (2013). Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars. Geochimica et Cosmochimica Acta, 109, 222-240. https://doi.org/10.1016/j.gca.2013.01.043.

Nelson, P.L., & Grand, S.P. (2018). Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves. Nature Geoscience, 11, 280-284. https://doi.org/10.1038/s41561-018-0075-y.

Neubeck, A., Duc, N.T., Bastviken, D.T., Crill, P., & Holm, N.G. (2011). Formation of H2 and CH4 by weathering of olivine at temperatures bet-ween 30 and 70 °C. Geochemical Transactions, 12(1), 6. https://doi.org/10.1186/1467-4866-12-6.

Newell, D.K., Doveton, J.H., Merriam, D.F., Sherwood Lollar, B., Waggoner, W.M., & Magnuson, M.L. (2007). H2-rich and hydrocarbon gas recovered in a deep Precambrian well in northeastern Kansas. Natural Resources Research, 16(3), 277-292. https://doi.org/10.1007/s110 53-007-9052-7.

Ólafsson, M., Torfason, H., & Grцnvold, K. (2000). Surface exploration and monitoring of geothermal activity in the Kverkjцll geothermal area, Central Island. Proceedings World Geothermal Congress 200, Kyushu-Tohoku, Japan, May 28-June 10, 2000.

Pawson, J.F. (2014). Abiotic Methane Formation at the Dun Mountain Ophiolite, New Zealand. Master of Science Degree Thes’s, University of Canterbury, 84 p.

Pitkänen, P., & Partamies, S. (2007). Origin and Implications of Dissolved Gases in Groundwater at Olkiluoto. Posiva Oy FI-27160, Finland, 62 p.

Prinzhofer, A. & Deville, E. (2015). L’hydrogйne naturel, la prochaine rйvolution йnergйtique? Une Йnergie Inйpuisable Et Non Polluante. Paris: Berlin, 171 p.

Prinzhofer, A., Ciss, C.S.T., & Diallo, A.B. (2018). Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). Journal of Hydrogen Energy, 43(42), 19315-19326.

Prinzhofer, A., Moretti, I., Francolin, J., Pacheco, C., d’Agostino, A., Werly, J., & Rupin, F. (2019). Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H2-emitting structure. International Journal of Hydrogen Energy, 44(12), 5676-5685. https://doi.org/10.1016/j.ijhydene.2019.01.119.

Priatna, P., & Kadarsetia, A. (2007). Characteristics of volcanic gas correlated to the eruption activity; Case study in the Merapi Volcano, periods of 1990-1994. Indonesian Journal on Geosciences, 2(4), 235-246. http://dx.doi.org/10.17014/ijog.vol2no4.20074.

Rizzo, A.L., Barberi, F., Carapezza, M.L., Di Piazza, A., Francalanci, L., Sortino, F., & D’Alessandro, W. (2015). New mafic magma refilling a quiescent volcano: Evidence from He-Ne-Ar isotopes during the 2011-2012 unrest at Santorini, Greece. Geochemistry, Geophysics, Geosystems, 16(3), 1-17. https://doi.org/10.1002/2014GC005653.

Sato, M., Sutton, A.l., McGee, K.A., & Russel-Robinson, S. (1986). Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980-1984. Journal Geophysical Research, 91(B12), 1315-1326. https://doi.org/10.1029/JB091iB12p12315.

Sherwood Lollar, J., Voglesonger, I.K., Lin, L-H., Lacrampe-Couloume, G., Telling, J., Abrajano, T.A., Onstott, T.C., & Pratt, L.M. (2007). Hydrogeologic Controls on Episodic H2 Release from Precambrian Fractured Rocks-Energy for Deep Subsurface Life on Earth and Mars. Astrobiolgy, 7(6), 971-986. https://doi.org/10.1089/ast.2006.0096.

Shinohara, H., Giggenlach, W. F., Kazihaya, K., & Hedenquist, F.W. (1993). Geochemistry of volcanic gases and hot springs of Satsuma-Iwojima, Japan: Following Matsuo. Geochemical Journal, 27, 271-285. https://doi.org/10.2343/geochemj.27.271.

Sleep, N.H. Meibom, A., Fridriksson, G., Coleman, Th.R, & Bird, D.K. (2004). H2-rich fluids from serpentinization: Geochemical and biotic implications. PNAS, 101(35), 12818-12623. https://doi.org/10.1073/pnas.0405289101.

Smith, N.J.P., Shepherd, T.J., Styles, M.T., & Williams, G.M. (2005). Hydrogen exploration: a review of global hydrogen accumulations and implications for prospective areas in NW Europe. In: A.G. Dorй, B.A. Vining (Eds.), Petroleum Geology: North-West Europe and Global Perspectives-Proceedings of the 6th Petroleum Geology Conference (pp. 349-358). Published by the Geological Society, London.

Spear, J.R., Walker, J.J., McCollom, T.M., & Pace, N.R. (2005). Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proceeding of the National Academy of Sciences, 102(7), 2555-2560. https://doi.org/10.1073/pnas.0409574102.

Suda, K., Ueno, Y., Yoshizakia, M., Nakamura, H., Kurokawa, K., Nishiyama, E., Yoshino, K., Honkoh, Y., Kawashi, K., Omori, S., Yamada, K., Yoshida, N., & Maruyama, S. (2014). Origin of methane in serpentinites-hosted hydrothermal systems: The CH4-H2-H2O hydrogen isotope systematics of the Hakuba Happo hot spring. Earth and Planetary Science Letters, 386(1), 112-125. https://doi.org/10.1016/j.epsl.2013.11.001.

Sugisaki, R., Anno, H., Adashi, M., & Ui, H. (1980). Geochemical features of gases and rocks along active faults. Geochemical Journal, 14, 101-112. https://doi.org/10.2343/geochemj.14.101.

Suzuki, S., Ishii, S., Wu, A., Tenney, A., Wanger, G., Kueen, J.G., & Nealson, K.H. (2013). Microbial diversity in the Cedars, an ultrabasic ultrareducing, and low salinity serpentinizing ecosystem. Proceeding of the National Academy of Sciences of the United States of America, 110(38), 15336-15341. https://doi.org/10.1073/pnas.1302426110.

Szponar, N., Brazelton, W.J., Schrenk, M.O., Boer, D.M. A D., Steele, M., & Morril, P. (2013) Geochemistry of a continental site of a serpentinization the Tablelands Ophiolite, Gros Morne National Park: A Mars analogue. Icarus, 224(2), 286-296. https://doi.org/10.1016/j.icarus.2012.07.004.

Symonds, R.B., Rose, W.I., Gerlach, T.M., Briggs, P.H., & Harmon, R.S. (1990). Evaluation of gases, condensates, and SO2 emissions from Augustine volcano, Alaska: The degassing of a Cl-rich volcanic system. Bulletin of Volcanology, 52, 355-374. https://doi.org/10.1007/BF00302048.

Tamburello, G., Agusto, M., Caselli, A., Tassi, F., Vaselli, O., Calabrese, S., Rouwet, D., Capaccioni, B., Di Napoli, R., Cardellini, C., Chiodini, G., Bitetto, M., Brusca, L., Bellomo, S., & Aiuppa, A. (2015). Intense magmatic degassing through the lake of Copahue volcano, 2013-2014. Journal of Geophysical Research: Solid Earth, 120, 6071-6084. https://doi.org/10.1002/2015JB012160.

Taran, Yu., A., Hedenquist, J.W., Korzhinsky, M.A., Tkachenko, S.I., & Shmulgovich, K.I. (1995). Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands. Geochimica et Cosmochimica Acta, 59(9), 1749-1761. https://doi.org/10.1016/0016-7037(95)00079-F.

Taran, Y., Fischer, T.P., Pokrovsky, B., Sano, Y., Armienta, M.A., & Macias, J.I. (1998). Geochemistry of the volcano-hydrothemal system of El Chichуn Volcano, Chiapas, Mexico. Bulletin of Volcanology, 59, 436-449. https://doi.org/10.1007/s004450050202.

Taran, Y.A., Varley, N.R., Inguaggiato, S., & Ci-enfuegos, E. (2011). Geochemistry of H2- and CH4-enriched hydrothermal fluids of Socorro Island, Revillagigedo Archipelago, Mexico. Evidence for serpentinization and abiogenic methane. Geofluids, 10(4), 542-555. https://doi.org/10.1111/j.1468-8123.2010.00314.x.

The Fiery Origins of Carolina Bays. (2013). Retrieved from https://www.coastalreview.org/2013/08/the-fiery-origins-of-carolina-bays/.

Tassi, F., Vaselli, O., Capaccioni, B., La Pira, V.G., Macias, J.L., Nencetti, A., Montegrossi, G., & Magro, G. (2003). Chemical composition of fumarolic gases and spring discharges from El Chicho’n volcano, Mexico: causes and impli-cations of the changes detected over the period 1998-2000. Journal of Volcanology and Geothermal Research, 123, 105-121. https://doi.org/10.1016/S0377-0273(03)00031-3.

Tassi, F., Vaselli, O., Capaccioni, B., Giolito, C., Duarte, E., Fernandez, E., Minissale, A., & Magro, G. (2005). The hydrothermal-volcanic system of Rincon de la Vieja volcano (Costa-Rica): A combined (inorganic and organic) geochemical approach to understanding the origin of the fluid discharges and its possible application to volcanic surveillance. Journal of Volcanology and Geothermal Research, 148(3-4), 315-333. https://doi.org/10.1016/j.jvolgeores.2005.05.001.

Tassi, F., Venturi, S., Cabassi, J., Capecchiacci, F., Nisi, B., & Vaselli, O. (2015). Volatile organic compounds (VOCs) in soil gases from Solfatara crater (Campi Flegrei, southern Italy): Geogenic source(s) vs. biogeochemical processes. Applied Geochemistry, 56, 37-49. http://doi.org/10.1016/j.apgeochem.2015.02.005.

Truche, L., & Bazarkina, E.F. (2019). Natural hydrogen the fuel of the 21st century. In 16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference). E3S Web Conf. (Vol. 98). https://doi.org/10.1051/e3sconf/20199803006.

Truche, L., Joubert, G., Dargent, M., Martz, P., Cathelineau, M., Rigaudier, T., & Quirt, D. (2018). Clay minerals trap hydrogen in the Earth’s crust: Evidence from the Cigar Lake uranium deposit, Athabasca. Earth and Planetary Science Letters, 2(1), 186-197. https://doi.org/10.1016/j.epsl.2018.04.038.

Tsunogai, U., Kamimura, K., Anzai, S., Nakagawa, F., & Komatsu, D.D. (2011). Hydrogen isotopes in volcanic plumes: Tracers for remote temperature sensing of fumaroles. Geochimica et Cosmochimica Acta, 75(16), 4531-4546. https://doi.org/10.1016/j.gca.2011.05.023.

Vacquand, C. (2011). Genиse et mobilitй de l’hydrogиne naturel: source d’йnergie ou vecteur йnergйtique stockable? Thиse. Prйsentйe devant l’Institut de Physique du Globe de Paris Le 18 mars 2011, 174 p.

Vacquand, C., Deville, E., Beaumont, V., Guyot, F., Sissmann, O., Pillot, D., Arcilla, C., & Prinzhofer, A. (2018). Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochimica et Cosmochimica Acta, 223(1), 437-461. https://doi.org/10.1016/j.gca.2017.12.018.

Vaselli, O., Tassi, F., Tedesco, D., Poreda, J.R., & Caprai, A. Submarine and inland gas discharges from the CampiFlegrei (southern Italy) and the Pozzuoli Bay: geochemical clues for a common hydrothermal-magmatic source. Procedia Earth and Planetary Science, 4, 57-73. https://doi.org/10.1016/j.proeps.2011.11.007.

Villemant, B., Komorowski, J.C., Dessert, C., Michel, A., Crispi, O., Hammouya, G., Beauducel, F., & De Chabalier, J.B. (2014). Evidence for a new shallow magma intrusion at La Soufriиre of Guadeloupe (Lesser Antilles). Insights from longterm geochemical monitoring of halogen-rich hydrothermal fluids. Journal of Volcanology and Geothermal Research, 285, 247-277. http://doi.org/10.1016/j.jvolgeores.2014.08.002.

Zelenski, M.E, Taran, Yu.A., Dubinina, E.O., Sha-par, V.N., & Polyntseva, E.A. (2012). Sources of Volatiles for a Subduction Zone Volcano: Mutnovsky Volcano, Kamchatka. Geochemistry International, 50(6), 502-521. https://doi.org/10.1134/S001670291204009X.

Zgonnik, V. (2020). The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews, 203, 103140. https://doi.org/10.1016/j.earscirev.2020.103140.

Zgonnik, V., Beaumont, V., Deville, E., Larin, N., Pillot, D., & Farrell, K.M. (2015). Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA). Progress in Earth and Planetary Science, 2, 31. https://doi.org/10.1186/s40645-015-0062-5.

Zgonnik, V., Beaumont, V., Larin, N., Pillot, D., & Deville, E. (2019). Diffused flow of molecular hydrogen through the Western Hajar mountains, Northern Oman. Arabian Journal of Geosciences, 12, 71. https://doi.org/10.1007/s12517-019- 4242-2.

Zhou, X., Du, J., Chen, Z., Cheng, J., Tang, Yi., Yang, L., Xie, C., Cui, Y., Liu, L., Yi, L, Yang, P., & Li, Y. (2010). Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China. Geochemical Transactions, 11, 5. https://doi.org/10.1186/1467-4866-11-5.

##submission.downloads##

Опубліковано

2020-12-24

Як цитувати

Rusakov, O. (2020). Глобальна інвентаризація вимірювань концентрації вільного і розчиненого в підземних водах молекулярного водню в земній корі суші. Геофізичний журнал, 42(6), 59–99. https://doi.org/10.24028/gzh.0203-3100.v42i6.2020.222284

Номер

Розділ

Статті