Природні джерела та умови утворення геологічного водню (в контексті пошуків водневих покладів)

Автор(и)

  • К.А. Безручко Інститут геотехнічної механіки ім. М.С. Полякова НАН України, Україна

DOI:

https://doi.org/10.24028/gj.v44i2.256267

Ключові слова:

геологічний водень, джерела та шляхи генерації вільного водню, критерії пошуку водневих скупчень

Анотація

Світові енергетичні проблеми значною мірою можуть бути вирішені у разі відкриття величезних кількостей газоподібного водню у вільному стані, що розглядається як перспективна альтернатива запасам традиційного викопного палива у земній корі. Проте розвиток водневої галузі стримується через низку проблем, зокрема в геології. На сьогодні немає ні стратегії пошуків та розвідки, ні оцінювання ресурсів, оскільки відсутні відповідний досвід та практичні рекомендації, спрямовані на геологічний водень.

Мета статті — встановлення і аналіз можливих шляхів та геологічних умов утворення, міграції та накопичення водню природного походження в земній корі для подальшого обґрунтування концепції пошуків скупчень вільного водню.

Розглянуто всі можливі теоретичні природні джерела та шляхи генерації водню у природних умовах. Загалом його походження передбачається магматичним, термогенним, ендогенним, біогенним, а також спричиненим радіолізом, розкладанням органічної речовини, взаємодією води з поновлювальними агентами в мантії. Проаналізовано всі відомі можливі шляхи генезису вільного водню у природних умовах. Геологічно контрольовані джерела природного водню можуть бути згруповані згідно з основними процесами: водні процеси гідролізу (декілька процесів, які включають окиснення залізистих мінералів, радіоліз, катаклаз та метаморфізм; розпад органічної речовини (у тому числі термічне дозрівання); розкладання водневовмісних сполук (зокрема метану і/або аміаку при метаморфізмі); глибока дегазація надр Землі. Проаналізовано можливі місця знаходження вільного водню у геологічному середовищі. Природні умови для підвищеного вмісту водню містять басейни з наявністю вуглеводнів, молоді відклади з рясною органічною речовиною, вугільні пласти, зони тектонічних розломів, екструзивні магматичні тіла, лужні магматичні комплекси, геотермальні поля, кристалічні фундаменти, товщі порід, збагачені калієм, соленосні товщі та ультраосновні породи.

Внаслідок невизначеності щодо шляхів та умов генерації водню у земній корі геологічні пошуки та можлива подальша розвідка водневих скупчень потребують поєднання методів і даних, які застосовують для традиційних пошуків вуглеводневих покладів — звичайних родовищ нафти та газу (материнські породи, резервуар, покришка), з урахуванням особливостей вільного водню, зокрема рухливості та реакційної здатності його молекули. Незалежно від генезису водню головні пошукові критерії потрібно орієнтувати на шляхи його міграції та наявність колектору та покришки. Такий підхід максимально поєднує конкуруючі між собою, з позиції генезису водню, гіпотези. Потрібні геологічна структура з відповідним резервуаром та флюїдоупор (покришка), який на відміну від флюїдоупорів у звичайному сенсі має бути не тільки непроникним, а й хімічно нейтральним стосовно водню.

Посилання

Bahrii, I.D., Hozhyk, P.F., Pavliuk, M.I., Zabulonov, Yu.L., Rudko, H.I., Malchevskyi, I.A., Riepkin, O.O., Kuzmenko, S.O. (2019). Justification of the search technology for hydrogen accumulations and Geodynamic phenomena (oil and gas-bearing regions, mine fields). Kyiv: Foliant, 96 p. (in Ukrainian).

Belov, S.V. (2011). Hydrogen degassing of the planet: analysis of volcanic structures. Oko planet. Retrieved from https://oko-planet.su/phenomen/

phenomenscience/93242-vodorodnaya-degaza ciya-planety-analiz-vulkanicheskih-struktur.html (in Russian).

Gordyenko, V.V. (2019). On hydrogen degassing in the areas of recent activation of Ukraine. Geophysical Journal, 41(5), 115—127. https://doi.org/10.24028/gzh.0203-3100.v41i5.2019.183617 (in Russian).

Kozlovsky, E.A. (Ed.). (1984). Study of the Deep Structure of the Continental Crust by Drilling the Kola Superdeep Well. Moscow: Nedra, 492 p. (in Russian).

Moisyshyn, V.M., Naumko, I.M., Pylypets, V.I., Radchenko, V.V., Khalimendikov, Ye.M., Kozhushok, O.D., Zinchenko, S.A., Sheveliev, L.V., Yushkov, Ye.O., & Turchin, V.A. (2013). Integrated development of coal gas fields based on in-line well drilling technologies. Kiev: Naukova Dumka, 310 р. (in Ukrainian).

Kryvytskyi, V.A. (2016). Paradoxes of Transmutation and Earth Development. Unobvious Evidence. Moscow: Akademika, 239 p. (in Russian).

Laryn, V.N. (1980). The hypothesis of an initially hydride Earth. Moscow: Nedra, 216 p. (in Russian).

Laryn, V.N. (2005). Our Earth (origin, composition, structure and evolution of primordially hydride Earth). Moscow: Agar, 247 р. (in Russian).

Marakushev, A.A. (1999). Origin of the Earth and nature of its endogenous activity. Moscow: Nauka, 253 p. (in Russian).

Petrova, V.P., Bogatikova, O.A., & Petrova, R.P. (Eds.). (1981). Petrographic Dictionary. Moscow: Nedra, 496 р. (in Russian).

Portnov, A.V. (2010). Volcanoes — natural hydrogen fields. Promyshlennye vedomosti, (10—12). Retrieved from https://www.promved.ru/ articles/article.phtml?id=2015 (in Russian).

Rusakov, O.M. (2020). A global inventory of concentration measurements of free and dissolved in underground waters molecular hydrogen in the Earth’s crust on land. Geophysical Journal, 42(6), 59—99. https://doi.org/10.24028/gzh.0203-3100.v42i6.2020.222284 (in Russian).

Semenenko, N.P. (1990). Oxygen-hydrogen model of the Earth. Kiev: Naukova Dumka, 240 p. (in Russian).

Skliarov, A.Yu. (2012). Sensational history of the Earth. Moscow: Veche, 256 p. (in Russian).

Shestopalov, V.M. (2020). On geological hydrogen. Geophysical Journal, 42(6), 3—35. https://doi.org/10.24028/gzh.0203-3100.v42i6.2020 (in Russian).

Shestopalov, V.M., Lukin, A.Yu., Zgonik, V.A., Makarenko, A.N., Larin, N.V., & Bohuslavsky, A.S. (2018). Essays on Earth degassing. Kiev: Itekservis, 232 p. (in Russian).

Shestopalov, V.M., & Makarenko, A.N. (2013). On some results of research developing V.I. Vernadsky’s idea of «gas respiration» of the Earth. Article 1.Surface and near-surface manifestations of abnormal degassing. Heolohichnyy Zhurnal, (3), 7—25 (in Russian).

Shcherbakov, A.V., & Kozlova, N.D. (1986). The prevalence of hydrogen in underground fluids and the relationship of its anomalously high concentrations with deep faults in the USSR. Geotektonika, (2), 56—66 (in Russian).

Yakutseny, V.P. (1984). Intensive gas accumulation in the subsurface. Leningrad: Nauka, 124 p. (in Russian).

Allen, D.E., & Seyfried, W.E. (2003). Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400 °C, 500 bars. Geochimica et Cosmochimica Acta, 67, 1531—1542. https://doi.org/10.1016/S0016-7037(02)01173-0.

Andreani, M., Muñoz, M., Marcaillou, C., & Delacour, A. (2013). µXANES study of iron re¬dox state in serpentine during oceanic serpen¬tinization. Lithos, 178, 70—83. https://doi.org/ 10.1016/j.lithos.2013.04.008.

Bogdanov, Y.A. et al. (1995). A study of the hydrothermal field at 14°45’N on the Mid-Atlantic Ridge using the MIR submersibles. BRIDGE Newsletter, 9, 9—13.

Boulart, C., Chavagnac, V., Monnin, C., Delacour, A., Ceuleneer, G., & Hoareau, G. (2013). Dif¬ferences in gas venting from ultramafic-hos¬ted warm springs: the example of Oman and Voltri ophiolites. Ofioliti, 38, 143—156. https://doi.org/10.4454/ofioliti.v38i2.423.

Brazelton, W.J., Nelson, B., & Schrenk, M.O. (2012). Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities. Front Microbiol, 2. https://doi.org/10.3389/fmicb.2011.00268.

Briere, D., Jerzykiewicz, T., & Śliwiński, W. (2017). On generating a geological model for hydrogen gas in the Southern Taudenni Megabasin (Bourakebougou area, Mali). Search and Discovery Article, (4204). Retrieved from http://www.searchanddiscovery.com/documents/2017/42041jerzykiewicz/ndx_jerzykiewicz.pdf.

Conrad, R., & Seiler, W. (1981). Decomposition of atmospheric hydrogen by soil microorganisms and soil enzymes. Soil Biology and Biochemistry, 13, 43—49. https://doi.org/10.1016/0038-0717(81)90101-2.

Cathles, L., & Prinzhofer, A. (2020). What Pulsating H2 Emissions Suggest about the H2 Resource in the São Francisco Basin of Brazil. Geosciences, 10, 149. https://doi.org/10.3390/geosciences10040149.

Charlou, J-L., & Donval, J-P. (1993). Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 98(B6), 9625—9642. https://doi.org/10.1029/92JB02047.

Christie, D.M., Carmichael, S.E., & Langmuir, C.H. (1986). Oxidation states of mid-ocean ridge basalt glasses. Earth and Planetary Science Letters, 79, 397—411. https://doi.org/10.1016/0012-821X(86)90195-0.

Deyg, R., Kishore, K., Moorthy, P.N., et al. (1990). Water radiolysis at high temperatures and pressures. Bombay: Bhabha Atomic Research Centre, 27 p.

Dixon, J.E., Stolper, E.M., & Holloway, J.R. (1995). An experimental study of water and carbon dioxide in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. Journal of Petrology, 36, 1607—1631. https://doi.org/10.1093/oxfordjournals.petrology.a037267.

Donzé, F.V., Truche, L., Namin, P.S., Lefeuvre, N., & Bazarkina, E.F. (2020). Migration of Natural Hydrogen from Deep-Seated Sources in the São Francisco Basin, Brazil. Geosciences, 10, 346. https://doi.org/10.3390/geosciences10090346.

Evans, B.W., Hattori, K., & Baronnet, A. (2013). Serpentinite: what, why, where? Elements, 9, 99—106. https://doi.org/10.2113/gselements.9.2.99.

Etiope, G., & Schoell, M. (2014). Abiotic gas: atypical but not rare. Elements, 10, 291—296. https://doi.org/10.2113/gselements.10.4.291.

Etiope, G., Vadillo, I., Whiticar, M.J., Marques, J.M., Carreira, P.M., Tiago, I., Benavente, J., Jiménez, P., & Urresti, B. (2016). Abiotic methane seepage in the Ronda peridotite massif, southern Spain. Applied Geochemistry, 66, 101—113. https://doi.org/10.1016/j.apgeochem.2015.12.001.

Flude, S., Warr, O., Magalhães, N. Bordmann, V., Fleury, J.M., Reis, H.L.S., Trindade, R.I., Hillegonds, D., Sherwood Lollar, B., & Ballentine, C.J. (2019). Deep crustal source for hydrogen and helium gases in the São Francisco Basin, Minas Gerais, Brazil. AGUFM 2019, EP51D-2111.

Foustoukos, D.I., Savov, I.P., & Janecky, D.R. (2008). Chemical and isotopic constraints on water/rock interactions at the Lost City hydrothermal field, 30 N Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 72, 5457—5474. https://doi.org/10.1016/j.gca.2008.07.035.

Gaucher, E.C. (2020). New Perspectives in the Industrial Exploration for Native Hydrogen. Retrieved from http://elementsmagazine.org/2020/02/01/new-perspectives-in-the-industrial-exploration-for-native-hydrogen/.

Gilat, A.L., & Vol, A. (2012). Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes. Geoscience Frontiers, 3(6), 911—921. https://doi.org/10.1016/j.gsf.2012.03.009.

Gilat, A.L., & Vol, A. (2005). Primordial hydrogen-helium degassing, an overlooked major energy source for internal terrestrial processes. HAIT Journal of Science and Engineering B, 2(1-2), 125—167.

Hirose, T., Kawagucci, S., & Suzuki, K. (2011). Mechanoradical H2 generation during simulated faulting: Implications for an earthquake-driven subsurface biosphere. Geophysical Research Letters, 38, L17303. https://doi.org/10.1029/2011GL048850.

Holloway, J.R., & O’Day, P. (1999). Hydrogen flux at MORs: potential for primary biologic production in seafloor hydrothermal systems. Eos, 80(46), F83.

Holloway, J.R., & O’Day, P. (2000). Production of CO2 and H2 by diking-eruptive events at mid-ocean ridges: implications for abiotic organic synthesis and global geochemical cycling. International Geology Review, 42, 673—683. https://doi.org/10.1080/00206810009465105.

Holm, N.G., Oze, C., Mousis, O., Waite, J.H., & Guilbert-Lepoutre, A. (2015). Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology, 15(7), 587—600. https://doi.org/10.1089/ast. 2014.1188.

Horning, G., Sohn, R.A., Canales, J.P., & Dunn, R.A. (2018). Local seismicity of the rainbow massif on the Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 123, 1615—1630. https://doi.org/10.1002/2017JB015288.

Huang, R., Lin, C., Sun, W., Ding, X., Zhan, W., & Zhu, J. (2017). The production of iron oxide during peridotite serpentinization: Influence of pyroxene. Geoscience Frontiers, 8(6), 1311—1321. https://doi.org/10.1016/j.gsf.2017.01.001.

Ikuta, D., Ohtani, E., Sano-Furakawa, A., Shibazaki, Y., Terasaki, H., Yuan, L., & Hattori, T. (2019). Interstitial hydrogen atoms in facecentered cubic iron in the Earth’s core. Scientific Reports, 9, 7108. https://doi.org/10.1038/s41598-019-43601-z.

Isaev, E.I., Skorodumova, N.V., Ahuja, R., Vekilov, Yu.K., & Johansson, B. (2007). Dynamic stability of Fe-Hin the Earth’s mantle and core regions. Proceedings of the National Academy of Sciences of the USA, 104(22), 9168—9171. https://doi.org/10.1073/pnas.0609701104.

Ito, T., Nagamine, K., Yamamoto, K., Adacht, M., & Kawabe, I. (1999). Preseismic hydrogen gas anomalies caused by stress-corrosion pro¬cess preceding earthquakes. Geophysical Re¬search Letters, 26, 13—17. https://doi.org/10. 1029/1999GL900407.

Javoy, M., & Pineau, F. (1991). The volatile record of a «popping» rock from the Mid-Atlantic Ridge at 148 N: chemical and isotopic composition of gas trapped in the vesicles. Earth and Planetary Science Letters, 107, 598—611. https://doi.org/10.1016/0012-821X(91)90104-P.

Jones, V.T., & Pirkle, R.J. (1981). Helium and hydrogen soil gas anomalies associated withdeep or active faults. Proc. of the 1981 American Chemical Society Annual Meeting, Atlanta, GA.

Karato, S. (2006). Remote sensing of hydrogen in Earth’s mantle. Reviews in Mineralogy and Geochemistry, 62, 343—375. https://doi.org/10. 2138/rmg.2006.62.15.

Klein, F., Bach, W., Jöns, N., McCollom, T., Moskowitz, B., & Berquó, T. (2009). Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 73, 6868—6893. https://doi.org/10.1016/j.gca.2009.08.021.

Klein, F., Grozeva, N.G., & Seewald, I.S. (2019). Abiotic methane synthesis and serpentinization in olivine — hosted fluid inclusions. Proceedings of the National Academy of Sciences of the USA, 116(36), 17666—17672. Retrieved from www.pnas. org/cgi/doi/10.1073/pnas.1907871116.

Klein, F., Wolfgang, B., & McCollom, T.M. (2013). Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos, 178(15), 55—69. https://doi.org/ 10.1016/j.lithos.2013.03.008.

Kolesnikov, A., Kutcherov, V., & Goncharov, A. (2009). Methane-derived hydrocarbons produced underupper-mantle conditions Methane-derived hydrocarbons produced underupper-mantle conditions. Nature Geoscience, 2, 566—570. https://doi.org/10.1038/ngeo591.

Konn, C., Charlou, J.L., Holm, N.G., & Mousis, O. (2015). The production of Methane, Hydrogen and Organic Compounds in Ultramafic — Hosted Hydrothermal Vents of the Mid-Atlantic Ridge. Astrobiology, 15(5), 381—399. https:// doi.org/10.1089/ast.2014.1198.

Kronig, R., de Boer, J., & Korringa, J. (1946). On the internal constitution of the Earth. Physica, 12(5), 245—256. https://doi.org/10.1016/S0031-8914(46)80065-X.

Larin, V. N., & Warren Hunt, C. (1993). Hydridic Earth: the new geology of our primordiallyhydrogen-rich planet. Alberta: Polar Publishing.

Larin, N.V., Zgonnik, V., Rodina, S., Deville, E., Prinzhofer, A., & Larin, V.N. (2015). Natural molecular hydrogen seepage associated with surficial, roundeddepressions on the European craton in Russia. Natural Resources Research, 24(3), 369—383. https://doi.org/10.1007/s11053-014-9257-5.

Levshounova, S.P. (1991). Hydrogen in petroleum geochemistry. Terra Nova, 3(6), 579—585. https://doi.org/10.1111/j.1365-3121.1991.tb00199.x.

Levshounova, S.P. (1983). Solid solutions ofhydrogen insedimentary rocks. Doklady Academy of Science, USSR Earth Science Section, 272, 73—75.

Lin, L.H., Slater, G.F., Sherwood Lollar B., Lacrampe-Couloume, G., & Onstott, T.C. (2005). The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochimica et Cosmochimica Acta, 69, 893—903. https://doi.org/10.1016/j.gca.2004.07.032.

Lollar, B.S., Onstott, T.C., Lacrampe-Couloume, G., & Ballentine, C.J. (2014). The contribution of the Precambriancontinental lithosphere to global H2 production. Nature, 516, 379—382. https://doi.org/10.1038/nature14017.

Malvoisin, B., Brantut, N., & Kaczmarek, M. (2017). Control of serpentinisation rate by reaction-induced cracking. Earth and Planetary Science Letters, 476, 143—152. https://doi.org /10.1016/j.epsl.2017.07.042.

Martin, W., Baross, J., Kelley, D., & Russell, M.J. (2008). Hydrothermal vents and the origin of life. Nature Reviews Microbiology, 6, 805—814. https://doi.org/10.1038/nrmicro1991.

Mevel, C. (2003). Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience, 335, 825—852.

McCarthy, H., & McGuire, E. (1998). Soil gas studies along the Carlin trend, Eureka and Elko counties, Nevada. In R.M. Tosdal (Ed.), Contributions to the gold metallogeny of Northern Nevada. Open-File Report 98-338 (pp. 243—250). US Dept. of the Interior, US Geological Survey, Menlo Park.

McCollom, T. M. & Bach, W. (2009). Thermodynamic constraints on hydrogen generati-on during serpentinisation of ultramafic rocks. Geochimica et Cosmochimica Acta, 73(3), 856—875. https://doi.org/10.1016/j.gca.2008.10.032.

McCollom, T.M., & Seewald, J.S. (2007). Abiotic synthesis of organic compounds in deep sea hydrothermal environments. Chemical Reviews, 107, 382—401. https://doi.org/10.1021/cr0503660.

McCollom, T.M., & Seewald, J.S. (2001). A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochimica et Cosmochimica Acta, 65, 3769—3778. https://doi.org/10.1016/S0016-7037(01)00655-X.

McCollom, T.M., & Seewald, J.S. (2006). Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth and Planetary Science Letters, 243, 74—84. https://doi.org/10.1016/j.epsl.2006.01.027.

McCollom, T.M., & Seewald, J.S. (2013). Serpentinites, hydrogen and life. Elements, 9(2), 129—134. https://doi.org/10.2113/gselements.9.2.129.

Milner, Z. (2020). Fuel of The Future: the hydrogen field in Mali that could change our climate fortunes (December 30, 2020). Retrieved from https://www.palatinate.org.uk/fuel-of-the-future-the-hydrogen-field-in-mali-that-could-change-our-climate-fortunes/.

Monnin, C., Chavagnac, V., Boulart, C., Ménez, B., Gerard, M., Gerard, E., Pisapia, C., Quemeneur, M., Erauso, G., Postec, A., Guentas-Dombrowski, L., Payri, C., & Pelletier, B. (2014). Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia). Biogeosciences, 11, 5687—5706. https://doi.org/10.5194/bg-11-5687-2014.

Moody, J.B. (1976). Serpentinization: a review. Lithos, 9, 125—138. https://doi.org/10.1016/0024-4937(76)90030-X.

Murphy, C.A. (2016). Hydrogen in the Earth’s Core: Review of the Structural, Elastic and Thermodynamic Properties of Iron-Hydrogen Alloys. In Deep Earth: Physics and Chemistry of the Lower Mantle and Core (pp. 253—264). https://doi.org/10.1002/9781118992487.ch20.

Nandi, R., & Sengupta, S. (1998). Microbial Production of Hydrogen: An Overview. Critical reviews in microbiology, 24, 61—84. https://doi.org/10.1080/10408419891294181

Neal, C., & Stanger, G. (1983). Hydrogen generation from mantle source rocks in Oman. Earth and Planetary Science Letters, 66, 315—320. https://doi.org/10.1016/0012-821X(83)90144-9.

Nealson, K.H., Inagaki, F., & Takai, K. (2005). Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends in Microbioljgy, 13, 405—410. https://doi.org/10.1016/j.tim.2005.07.010.

Okuchi, T. (1997). Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science, 278, 1781—1784. https://doi.org/10.1126/science.278.5344.1781.

Parnell, J., & Blamey, N. (2017). Global hydrogen reservoirs in basement and basins. Geochemical transactions, 18, 2.

Pawar, S., & Van Niel, E.J. (2013). Thermophilic biohydrogen production: how far are we? Applied microbiology and biotechnology, 97, 7999—8009.

Petroma Fuels a Green Revolution with Natural Hydrogen. Retrieved from https://www.bisinfotech.com/petroma-fuels-a-green-revolution-with-natural-hydrogen/.

Poirier, I. (1994). Light elements in the Earth’s outer core: a critical review. Physics of the Earth and Planetary Interiors, 85, 319—337. https://doi.org/10.1016/0031-9201(94) 90120-1.

Potter, J., Salvi, S., & Longstaffe, F.J. (2013). Abiogenic hydrocarbon isotopic signatures in granitic rocks: Identifying pathways of formation. Lithos, 183, 114—124. https://doi.org/10.1016/j.lithos.2013.10.001.

Prinzhofer, A., Cissé, C.S.T., & Diallo, A.B. (2018). Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). International Journal of Hydrogen. Energy, 43(42), 19315—19326. https://doi.org/10.1016/j.ijhyde ne.2018.08.193.

Prinzhofer, A., & Deville, É. (2015). Hydrogène naturel. La prochaine révolution énergétique? Une énergie inépuisable et non polluante. Berlin, 190 p.

Prinzhofer, A., Moretti, I., Francolin, J., Pacheco, C., d’Agostino, A., Werly, J., & Rupin, F. (2019). Natural hydrogencontinuous emission from sedimentary basins: The example of a Brazilian H2 emitting structure. International Journal of Hydrogen. Energy, 44, 5676—5685. https://doi.org/10.1016/j.ijhydene.2019.01.119.

Proskurowski, G., Lilley, M.D., Seewald, J.S., Früh-Green, G.L., Olson, E.J., Lupton, J.E., Sylva, S.P., & Kelley, D.S. (2008). Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319, 604—607. https://doi.org/10.1126/science.1151194.

Ramdohr, P. (1967). A widespread mineral association connected with serpentinization. Neues Jahrbuch fur Mineralosiche Abhandlung, 107, 241—265.

Reeves, E.P., & Fiebig, J. (2020). Abiotic synthesis of methane and organic compounds in Earth’s lithosphere. Elements, 16(1), 25—32. https://doi.org/10.2138/gselements.16.1.25.

Rogozhin, E.A., Gorbatikov, A.V., Larin, N.V., & Stepanova, M.Y. (2010). Deep structure of the Moscow Aulacogene in the western part of Moscow. Izvestiya, Atmospheric and Oceanic Physics, 46(8), 973—981. https://doi.org/10. 1134/S0001433810080062.

Rumyantsev, V.N. (2016). Hydrogen in the Earth’souter core and its role in the deep Earth geodynamics. Geodynamics and Tectonophysics, 7(1), 119—135. https://doi.org/10.5800/GT-20 16-7-1-0200.

Russell, M.J., Hall, A.J., & Martin, W. (2010). Serpentinization as a source of energy at the origin of life. Geobiology, 8(5), 355—371. https://doi.org/10.1111/j.1472-4669.2010.00249.x.

Sarda, P., & Graham, D. (1990). Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth and Planetary Science Letters, 97, 268—289. https://doi.org/10.1016/0012-821X(90)90047-2.

Sato, M., Sutton, A.L., McGee, K.A., & Russel Robinson, S. (1986). Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980—1984. Journal of Geophysical Research, 91(B12), 1315—1326. https:doi.org/10.1029/JB091iB12p12315.

Schlindwein, V., & Schmid, F. (2016). Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature, 535, 276—279. https://doi.org/10.1038/nature18277.

Shcherbakov, A.V., & Kozlova, N.D. (1986). Occurrence of hydrogen in subsurface fluidsand the relationship of anomalous concentrations to deep faults in the USSR. Geotectonics, 20, 120—128.

Sherwood Lollar, B., Onstott, T., Lacrampe-Couloume, G., & Ballentine, C. (2014). The contribution of the Precambrian continental lithosphere to global H2 production. Nature, 516, 379—382. https://doi.org/10.1038/nature14017.

Silva, P.J., Van den Ban, E.C.D., Wassink, H., Haaker, H., de Castro, B., Robb, F.T., & Hagen, W.R. (2000). Enzymes of hydrogen metabolism in Pyrococcus furiosus. European Journal of Biochemical, 267, 6541—6551. https://doi.org/10.1046/j.1432-1327.2000.01745.x.

Sleep, N.H., Meibom, A., Fridriksson, Th., Coleman, R.G. & Bird, D.K. (2004). H2-rich fluids from serpentinization: geochemical and biotic implications. Proceedings of the National Academy of Sciences of the USA, 101(35), 818—823. https://doi.org/10.1073/pnas.0405289101.

Smetannikov, A.F. (2011). Hydrogen generation during the radiolysis of crystallization water in carnallite and possible consequences of this process. Geochemistry International Journal, 49(9), 916—924. https://doi.org/10.1134/S0016702911070081.

Smith, N.J.P., Shepherd, T.J., Styles, M.T., & Williams, G.M. (2005). Hydrogen exploration: a review of global hydrogen accumulations and implications for prospective areas in NW Europe. In A.G. Doré, B.A. Vining (Eds.), Petroleum Geology: North-West Europe and Global Perspectives-Proceedings of the 6th Petroleum Geology Conference (pp. 349—358). Published by the Geological Society, London.

Sokolova, T., Jeanthon, C., Kostrikina, N., Chernyh, N., Lebedinsky, A., Stackebrandt, E., & Bonch-Osmolovskaya, E. (2004). The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep sea hydrothermal vent. Extremophiles, 8, 317—323. https://doi.org/10.1007/s00792-004-0389-0.

Soule, S.A., Nakata, D.S., Fornari, D.J., Fundis, A.T., Perfit, M.R., & Kurz, M.D. (2012). CO2 variability in mid-ocean ridge basalts from syn-emplacement degassing: constraints on eruption dynamics. Earth and Planetary Science Letters, 327—328, 39—49. https://doi.org/10.1016/j.epsl.2012.01.034.

Šrámek, O., McDonough, W.F., Kite, E.S., Lekić, V., Dye, S.T., & Zhong, S. (2013). Geophysical and geochemical constraints on geoneutrino fluxes from Earth’s mantle. Earth and Planetary Science Letters, 361, 356—366. https://doi.org/ 10.1016/j.epsl.2012.11.001.

Stevenson, D.I. (1977). Hydrogen in the Earth’s core. Nature, 268, 130—131. https://doi.org/10. 1038/268130a0.

Su, Q., Zeller, E., & Angino, E.E. (1992). Inducing action of hydrogen migrating along faults on earthquakes. Acta Seismologica Sinica, 5(4), 841—847. https://doi.org/10.1007/BF02651032.

Sugisaki, R., Anno, H., Adashi, M., & Ui, H. (1980). Geochemical features of gases and rocks along active faults. Geochemical Journal, 14(3), 101—112. https://doi.org/10.2343/geochemj.14.101.

Sugisaki, R., Ido, M., Takeda, H., Isobe, Y., Hayashi, Y., Nakamura, N., Satake, H., & Mizutani, H. (1983). Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity. Journal of Geology, 91, 239—258. https://doi.org/10.1086/628769.

Takai, K., Gamo, T., Tsunogai, U., Nakayama, N., Hirayama, H., Nealson, K.H., & Horikoshi, K. (2004). Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep sea hydrothermal field. Extremophiles, 8, 269—282. https://doi.org/10.1007/s00792-004-0386-3.

Truche, L., & Bazarkina, E. (2019). Natural hydrogen the fuel of the 21st century. E3S Web of Conferences 98, 03006. https://doi.org/10.1051/e3sconf/20199803006.

Truche, L., Joubert, G., Dargent, M., Martz, P., Cathelineau, M., Rigaudier, T., & Quirt, D. (2018). Clay minerals trap hydrogen in the Earth’s crust: Evidence from the Cigar Lake uranium deposit, Athabasca. Earth and Planetary Science Letters, 493, 186—197. https://doi.org/10.1016/j.epsl.2018.04.038.

Vacquand, C., Deville, E., Beaumont, V., Guyot, F., Sissmann, O., Pillot, D., Arcilla, C., & Prinzhofer, A. (2018). Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochimica et Cosmochimica Acta, 223(1), 437—461. https://doi.org/10.1016/j.gca.2017.12.018.

Vovk, I.F. (1987). Radiolytic salt enrichment and brine in the crystalline basement of the East European platform, in Saline Water and Gases in Crystalline Rocks. Geological Association of Canada, Special Paper, 33, 197—210.

Wakita, H., Nakamura, Y., Kita, I., Fujii, N., & Notsu, K. (1980). Hydrogen release: New indicator of fault activity. Science, 210, 188—190. https://doi.org/10.1126/science.210.4466.188.

Walshe, J.L. (2006). Degassing of hydrogen from the Earth’s core and related phenomena of the system Earth. Geochimica et Cosmochimi¬ca Acta, 70(18), A684—A684. https://doi.org/10. 1016/j.gca.2006.06.1490.

Wang, X.B., Ouyang, Z.Y., Zhuo, Sh.G., Zhang, M.F., Zheng, G.D., & Wang, Y.L. (2014). Serpentinization, abiogenic organic com¬pounds, and deep life. Science China, Earth Scien¬ces, 57(5), 878—887. https://doi.org/10. 1007/s11430-014-4821-8.

Ware, R.N., Roecken, C. & Wyss, M. (1984). The detection and interpretation of hydrogen in fault gases. Pure and Applied Geophysics, 122(2—4), 392—402. https://doi.org/10.1007/B F00874607.

Warr, O., Guinta, T., Ballentine, Ch.J., & Sherwood Lollar, B. (2019). Mechanisms and rates of He, Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments. Chemical Geology, 530, 119322. https://doi.org/10.1016/j.chemgeo.2019.119322.

Welhan, J.A., & Craig, H. (1979). Methane and hydrogen in East Pacific Rise hydrothermal fluids. Geophysical Research Letters, 6, 829—831. https://doi.org/10.1029/GL006i011p00829.

Worman, S.L., Pratson, L.F., Karson, J.A., & Klein, E.M. (2016). Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere. Geophysical Research Letters, 43, 6435—6443. https://doi.org/10.1002/ 2016GL069066.

Zgonnik, V., Beaumont, V., Deville, E., Larin, N., Pillot, D., & Farrell, K.M. (2015). Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA). Progress in Earth and Planetary Science, 2, 31. https://doi.org/10.1186/s40645-015-0062-5.

Zgonnik, V. (2020). The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews, 203, 103140. https://doi.org/10.1016/j.earscirev.2020.103140.

Zhou, X., Du, J., Chen, Z., Cheng, J., Tang, Yi., Yang, L., Xie, C., Cui, Y., Liu, L., Yi, L, Yang, P., & Li, Y. (2010). Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China. Geo¬chemical Transactions, 11, 5. https://doi.org/10. 1186/1467-4866-11-5.

##submission.downloads##

Опубліковано

2022-06-02

Як цитувати

Безручко, К. . (2022). Природні джерела та умови утворення геологічного водню (в контексті пошуків водневих покладів). Геофізичний журнал, 44(2), 93–124. https://doi.org/10.24028/gj.v44i2.256267

Номер

Розділ

Статті